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The paper presents an improved system to recognition of Fuhrman grading in clear-cell

renal carcinoma using an ensemble of classifiers. The novelty of solution includes the

segmentation applying wavelet transformation in preprocessing stage, application of few

selection methods for feature generation and using the ensemble of classifiers in final

recognition step. The wavelet transformation is a very efficient tool for image de-noising and

enhancing the edges of cell nuclei. The important distinction to other approaches is that

diagnostic features of nuclei, based on the texture, geometry, color and histogram, are

selected by using few methods, each relying on different mechanism of selection. These

different sets of features have enabled creating the ensemble of classifiers based on the

support vector machine and random forest, both cooperating with them. Such approach has

led to the significant increase of the quality factors in comparison to the best existing results:

sensitivity (the average of this solution 94.3% compared to 91.5%) and specificity (the average

98.6% compared to 97.5%.
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1. Introduction

A clear-cell renal carcinoma (CC-RCC) is expressed in a form of
the nested tumor cells, separated from the others by the
network of delicate sinusoidal vascular channels [1–4]. The
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nuclear Fuhrman grading system [5] is commonly used in
classifying the grades of CC-RCC. It has 4 scales, where 1
represents the best prognosis and scale 4 the worst. The
grading takes into account such features as the size, shape,
chromatin pattern, and also the size of nucleoli. The details of
it can be found in the works [4,6–8].
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Table 1 – The number of cells of different grades used in
experiments.

Fuhrman grade 1 2 3 4

Number of cells 1164 1133 786 363
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However, the manual recognition of Fuhrman grade is
tedious and prone to errors. There are only small number of
works devoted to the computer methods to make the solution
automatic. One example of it is discussed in the papers [9,10]
where the mathematical morphology in combination gradient
were used to separate nuclei and the support vector machine
(SVM) classifier used in final recognition of the cells. The paper
[11] has shown that automatic analysis of slides allows
pathologists to see the spatial distribution of nuclei size,
which can be used to differentiate low-grade and high-grade
clear cell RCC with good sensitivity and specificity. The paper
[7] has presented the clinical decision support system for
automated Fuhrman grading of renal carcinoma biopsy
images, taking into account the semantic interpretation of
the imaging features. The accuracy reported by authors is
90.4% in a four-class recognition. Some works presenting the
application of artificial intelligence methods to the recognition
of cells in chosen pathological cases, like hepatocellular
carcinoma (HCC) [11] or the colon cells [12] have been also
reported. There are also some works developing the universal
platform able to perform the analysis of different types of
microscopic images in pathological cases [13]. However, the
analysis methods are specialized in particular pathologies.
This is important, since each pathology type has its own
specific nature and needs developing special methods of data
processing.

The aim of this paper is to develop an automatic system
which is able to improve the accuracy of Fuhrman grading of
renal cells to the value acceptable in the medical practice,
where up to 10% discrepancy of numerical results of few
experts are observed. The work is an improvement of the
previous solution presented in [9,10]. The novelties introduced
in this paper include: application of wavelet and watershed
transformation in the process of segmentation of the cells in
the image, introduction of few feature selection methods and
application of an ensemble of classifiers in the final stage of
cell recognition. The wavelet transformation reduces the noise
of the image and enhances the edges of cells, which lead to
more accurate recognition of nuclei. The cells are represented
here by the numerical descriptors (diagnostic features) based
on the texture, geometry, color and histogram.

The important novelty is application of few selection
methods used to choose the most important sets of these
descriptors. Application of few feature selection procedures
has allowed to analyze importance of diagnostic features from
different points of view. Thanks to this step it was possible to
select 5 different sets of optimal features, applied next as the
input attributes for the ensemble of classifiers.

The ensemble of classifiers is able to improve the
performance of a single (even the best) classifier [14]. The
developed ensemble is formed on the basis of two classifiers,
actually known as the best: the support vector machine (SVM)
and random forest (RF), both cooperating with the selected,
different sets of features. Such solution leads to better
accuracy of recognition of cells and improvement of Fuhrman
grading. The results of experiments presented in Table 3 show
significant improvement of the performance of the system.
Two types of ensemble have been developed: ensemble
composed of the results of all single classifiers and ensemble
taking into account only the best solutions.
The numerical results obtained thanks to these changes in
data processing are much better in comparison to the original
paper in AQCH or the presentation at VIPIMAGE conference.
This was stressed in Tables 4 and 5.

2. Materials

The numerical experiments have been performed using the
CC-RCC database created in the Military Institute of Medicine,
Warsaw, Poland. Seventy patients suffering from CC-RCC were
first evaluated by the medical experts and then used only in
the learning phase of the system. The other sixty-two different
patients, also representing all grades of the illness were used
in verification of the established system. 94 randomly selected
images corresponding to these patients have been analyzed.

The images of the tumor area representing the neoplasm
cells of kidneys have been created using hematoxylin and
eosin (H&E) staining. They were registered at magnification of
400� using an Olympus BX-61 microscope and Olympus DP-72
camera in RGB format and at 2070 � 1548 resolution. Typically
one slide per patient is prepared and assessed by the expert
pathologist. The number of cells representing each grade
should be in the range of hundreds.

The regions of interest (ROI) in the slide, subject to further
analysis, have been selected by three independent experts.
Due to some natural diversity among their verdicts, following
from the individual way of assessment of cells, we have
decided to use only these histological slides which were
assessed in the same way by all experts. Thanks to this the
target value for each cell used in classification is unique and
may be objectively compared to the result of our computerized
system.

All ROI images were processed to get the segmentation of
the individual cells. In this way the database of 3446
microscopic images of nuclei, extracted from these slides,
has been created and annotated by the experts. The cells
represent all Fuhrman grades (link to nuclei: http://
michalkruk.pl/FDataset.zip and link to images before segmen-
tation: http://michalkruk.pl/Images.zip). The number of cells
representing the succeeding Fuhrman grades, treated in
further experiments as classes, are shown in Table 1.

3. Methods

The system of Fuhrman grading developed in this paper is
composed of four main steps: (1) segmentation of the
individual nuclei from the H&E images, (2) definition of the
numerical descriptors representing the extracted nuclei, (3)
evaluation and selection of descriptors as the diagnostic
features by using few selection methods and (4) application of

http://michalkruk.pl/FDataset.zip
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http://michalkruk.pl/Images.zip
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an ensemble of the SVM and RF classifiers to recognize
Fuhrman grade of the cells.

3.1. Algorithm of nuclei segmentation

The aim of segmentation is to localize the nuclei of cells in the
analyzed image. Many different methods have been applied in
segmentation. Among them are: linear filters used for edge
detection [15], thresholding procedure[16], clusterization [17],
region growing methods [18], etc. In this work the watershed
transform based on the immersion simulation [16,19], com-
bined with the wavelet transformation have been applied. The
wavelet transformation [20] is used in denoising the image and
enhancing the edges using multiple resolution of the image.
Such technique is superior to standard denoising approaches
applying usually the linear filters, like Canny, Prewitt, Hough
or Laplacian [21]. Thanks to such approach the enhanced
version of the image gradient [22] can be obtained. The
watershed transform is performed on the gradient of the
denoised and enhanced image.

The wavelet transformation is the preprocessing step of the
image. Only two detail sub-images: horizontal and vertical
have been used. They represent the local differences along x
and y coordinates and provide good approximations for the
local image gradients at different scales. Thanks to them the
enhancement of the edges of the objects existing in the image
has been achieved. Denoising has been obtained in a few steps
[22]: 1) analysis of the image gradients with acceptation of only
these points, which are above some threshold level (gradients
of noise are usually smaller than these related to edges), 2)
comparison of the adjacent scales of the wavelet decomposi-
tion accepting only these which last longer and 3) analysis of
spatial distribution of the gradient removing the isolated
points. The Daubechies wavelet db4 at four levels of
decomposition has been applied in experiments [20].

The watershed implementation [16,19] is done in the next
step on the wavelet preprocessed gradient image. This
procedure creates the dams separating different regions of
the image representing the individual cells. A post-processing
stage is used to merge regions characterized by low contrast
borders, to remove over-segmented regions which have too
small areas and also to remove these, which don't satisfy the
additional specific criteria defined by the user.

Fig. 1 presents the results of application of this segmenta-
tion process to the microscopic images of kidney tissue in H&E
staining representing grades 2, 3 and 4. Left column depicts the
original images, the middle one – the segmentation results
obtained without application of wavelets and the right column
– the results of segmentation of the same images with
application of the wavelet transformation. It is evident, that
application of wavelet preprocessing has improved the quality
of segmentation results (better separation of close objects,
more accurate representation of the nuclei shape and less
noisy object area).

To make some statistical comparison 10 ROI images
selected from the slides (around 100 cells) have been analyzed
by our segmentation process. This analysis has confirmed
good quality of solution. The population of segmented cells
agreed in 98% with the expert recognition. The agreement of
the shape with the expert results was also very good (average
95% after wavelet transformation, compared to 89% before its
application.

3.2. Numerical descriptors of nuclei

The segmented nuclei should be described by the numerical
descriptors. To obtain the highest possible diversity of image
descriptors different principles of their generation have been
applied. In this work the texture, morphometry, color and
histogram descriptions have been applied.

Haralick descriptors refer to the texture [23,24]. 13 statisti-
cal descriptors have been used: energy, contrast, correlation,
sum of variances, inverse difference moment, entropy,
information measures of correlation, sum average, sum
entropy, sum variance, difference variance, contrast, and
difference entropy. Additionally four texture descriptors
related to heterogenity, homogenity, clump and condensation
[25] have been also defined.

The next set of morphometric features are defined for
description of the geometry of nuclei. They include: the area,
major axis length, minor axis length, perimeter, convex area,
eccentricity equivalent diameter ed ¼

ffiffiffiffiffiffiffiffiffiffi
4�area

p

q
and solidity

defined as the ratio of area to convex area.
Three descriptors have been defined on the basis of color.

At notation of intensity of pixels corresponding to red (R),
green (G) and blue (B) color components these descriptors are
defined as follows SG ¼ G

RþGþB, SB ¼ B
RþGþB and SR ¼ R

RþGþB. The
histogram of gray representation of the nuclei image has been
also used in definition of descriptors. The mean, standard
deviation and kurtosis of histogram have been included as the
additional set of descriptors.

The total number of descriptors defined in this way is 31.
However, not all of them possess good class discrimination
ability. Therefore the selection of the most important features
is needed.

3.3. Selection of class discriminative features

Many methods of feature selection have been already defined.
The most popular are: the principal component analysis, the
correlation among features, correlation between the features
and the classes, feature ranking by applying the linear or
nonlinear SVM, the mean and variance of the features
belonging to different classes combined into common quality
measure, genetic algorithm, binary particle swarm optimiza-
tion, random forest, etc. [17,26–28]. Each method selects the
specific set of the most important features. To diversify the
characterization of the image few selection algorithms have
been applied. They include: Fisher method, genetic algorithm,
random forest, correlation feature selection and fast correla-
tion based filter.

Fisher measure of quality is based on the standard
deviation and mean value of the feature describing the cells
of the same class [17]. The discrimination coefficient SAB( f)
defined for the feature f in recognition of samples belonging to
classes A and B is defined in the way

SABð f Þ ¼ cAð f Þ�cBð f Þj j
sAð f Þ þ sBð f Þ (1)



Fig. 1 – The graphical illustration of the segmentation of the H&E image of kidney tissue: left column – the original images,
middle column – the segmentation results without wavelet transformation, right column - the result after application of the
wavelet enhancement of the image. The majority cells in the upper row represent grade 2, in the middle row – grade 3 and in
the bottom row – grade 4).
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where cA and cB are the mean values of the feature f in the class
A and B, respectively, and sA and sB the corresponding stan-
dard deviations. Good feature should have large value of the
Fisher measure.

GA is a solution of global optimization. It operates with
many populations of solution (called chromosomes) and
applies the operations of selection of parents for reproduction,
crossover, creation of the offspring and application of
mutation to some bits representing the children [29]. The
genetic population applied in the experiments was equal
100 chromosomes, crossover rate 80% and mutation rate 1%.

The binary chromosomes used in genetic operations are
associated with the corresponding input vectors x which
represents the input attributes for the SVM classifier of
Gaussian kernel. The value 1 in chromosome means inclusion
of the feature in the vector x and zero – exclusion. The learning
data for classifier is created from 60% of the total data set,
and the remaining 40% represent the validation data.
The successively performed genetic operations lead to the
minimum of the objective function defined as the error of
classification. The features corresponding to the minimum of
the validation error represent the optimal set.

The random forest is also used for assessing the signifi-
cance of the features in the class recognition [15,30]. The
importance of feature is measured by permuting its values
and assessing the increase of the classification error in
comparison to original value of feature [30]. The higher is the
increase of the average error the better class discrimination
ability of the feature. The final number of features has been
estimated by trying different number of the best features
in the classification procedure and accepting this one,
which provides the highest accuracy of the system on the
validation data.

The next feature selection method applied in the work is
the correlation feature selection (CFS) [27]. It is based on the
fact, that good feature set should be well correlated with
the predicted class, while the individual features should not be
correlated among each other. The total measure Rcf of the
significance of the feature set with respect to the class c is
estimated in the form [27]
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Rcf ¼
NRciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ NðN�1ÞRii

q (2)

The parameter N is the number of features in the set, Rci is
the average value of the Pearson's correlation coefficients of
the analyzed set of features and the class c, while Rii is the
average inter-correlation between features in the set. The set
of features providing the highest value of Rcf is treated as the
best one in the classification process.

The fifth selection method used in our solution is fast
correlation based filter (FCBF) [28]. It is based on the entropy,
defined for the individual feature fi and for the same feature
after taking into account also another feature fj. The method
selects the set of the features significant in the class
recognition process and not redundant to any of the features
existing in the set.

The relevance of the feature f is estimated by defining the
symmetrical uncertainty SU( f,c) value for the feature f and the
class c as well as all values of the measure SU( fi,fj) for the
pairwise correlations of the features [23,28]. In our experi-
ments the threshold values for SU( f,c) = 0.68 and SU( fi,fj) = 0.50,
selected after some introductory experiments, have been
selected.

3.4. Classification system

The applied selection methods, based on various principles of
operation, result in different content of the sets of features,
treated by the particular methods as the best in classification
process. To obtain the highest efficiency of class recognition
we have applied all these sets as the input attributes to the
classifiers, forming an ensemble. The ensemble is able to
improve the performance of the classification system if the
individual classifiers are independent in action. Different
methods of achieving this independence are known and used
in practice [31,32]. To get the most diversified solution of the
classification problem and provide the maximum indepen-
dence of the ensemble members, two types of classifiers have
been used in this work: SVM [33] and RF [30]. These two well-
known classification systems have been chosen because they
apply different mechanisms of taking decision and at the same
time have very good reputation in pattern recognition.

The SVM of Gaussian kernel function K(x,xi) [33] was
applied in this work. The learning task of SVM is to separate
the vectors xi into opposite classes with the maximum
separation margin between classes. The hyperparameters in
the form of the regularization constant C and Gaussian kernel
width have been set by repeating the learning experiments for
the set of their predefined values and accepting this one,
which results in the minimum error on the validation data set.
To recognize four classes of data, six 2-class recognizing SVM
networks working in one-against-one mode of operation were
used.

The Breiman random forest is the second classification unit
used in this work [30]. It constructs many decision trees in
training and responses with the class label achieving the
majority among the members in an ensemble. To improve
the generalization property the learning data are chosen
randomly. At the same time the limited set of randomly
chosen features in each splitting node of the trees have been
applied. Both RF and SVM belong to the very high efficiency
classification systems.

Both classifiers were associated with the particular sets of
diagnostic features chosen by five applied selection methods.
In this way the ensemble composed of maximum 10 members
was created (each classifier combined with the individual set
of features selected by every one of the selection methods).

Fusion of the classification results of individual members of
the ensemble was performed by using the random forest as an
integrator. The input attributes to such integrator are formed
from the output signals of the classifiers forming an ensemble.
The majority of decision trees of RF are responsible for
generating the final class recognition. The numerical experi-
ments (recognition of data samples by the individual classi-
fiers and integration of their results) are done in the 10-fold
cross validation way.

4. Results of numerical experiments

The numerical experiments have been done using the samples
representing all Fuhrman grades, as presented in Table 1. They
were exactly the same as used in [9]. The data set was split into
two independent parts to separate the stage of feature
extraction from the classification. Seventy patients suffering
from the CC-RCC were used only in the definition of the sets of
diagnostic features. The features forming these sets were used
in the classification phase of experiments, which was
performed on the separate data set formed by other sixty-
two patients representing also all grades of the illness. The
classification stage (learning and testing) was done in 10-fold
cross validation mode.

The numerical descriptors created according to the
presented approach were subject to the selection using five
methods. Because each method was based on different
principle of operation, their results were also differing.

Table 2 presents the population of the sets of features
treated by the particular method as an optimal. The following
notations have been used in this table: FM – Fisher selection,
GA – genetic algorithm selection, RF – random forest selection,
CFS – correlation feature selection and FCBF – fast correlation
based filter selection method.

Some of the features have appeared in all these sets. To
such features belong: energy, contrast, correlation, area, major
axis length, convex area, mean of histogram, heterogenity,
homogenity, clump and condensation. They will be treated as
the most specific descriptors in an automatic system of
Fuhrman grade recognition of CC-RCC.

However, there are visible differences of class discrimina-
tion ability among these commonly selected features. Fig. 2
shows the Fisher discriminant values corresponding to them.
The numbers in horizontal axis indicate the succeeding
features mentioned above, i.e., 1 – energy, 2 – contrast,
3 – correlation, etc. and the vertical axis the values of their
Fisher discrimination coefficient. It seems that the major axis
length is the most class discriminative. Close to it are contrast,
area, convex area and mean of histogram.

Most of the commonly selected features represent unin-
tuitive values from the manual point of view performed by the



Table 2 – The size of the optimal feature sets selected by
the particular methods.

Method of selection FM GA RF CFS FCBF

Number of features 19 14 19 22 17

Fig. 2 – Fisher discriminant values of the commonly selected
features.
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human expert. However, some of them indicate which easily
accessible descriptors are important in manual assessment of
the slides. To such elements belong for example area, convex
area, major axis length or histogram.

In the next step these five feature sets have been used as
the input attributes to the SVM and RF classifiers in the
classification stage. Ten members of the classifier ensemble
have been created in this way. The classifiers have generated
their own outputs, which were subject to fusion into the final
verdict by using the random forest as an integrating unit. The
SVM and RF classifiers are known as a solutions relatively
tolerant to the small population size of the samples used in
learning. The number of samples representing all families of
cells (above 300) were sufficient to make the objective
assessment of the classification system.

All classification experiments have been performed in the
10-fold cross validation mode. The available data set was split
randomly into 10 equal parts. Nine of them were used in
learning the classification system and one used only in the
testing. The learning and testing phases have been repeated 10
times, each time changing the testing subset. The final testing
error is estimated as the average of the testing errors
committed by the system in all 10 runs.

Table 3 shows the statistical results of testing the individual
classifiers and their integrated output. They represent the
accuracy of recognition of the particular Fuhrman grade
obtained by the individual classifiers, ensemble composed
of all classifiers, called full ensemble (FE) and the limited
ensemble (LE) created from the most accurate classifiers in
learning mode: (SVM + FM, SVM + RF, RF + RF, RF + FCBF). The
limited ensemble fusing the best individual classifiers has
appeared the most successful.

Its results were superior to all individual classifiers and
slightly better than full ensemble (FE) composed of all
classifiers. For this best solution the confusion matrix has
Table 4 – The confusion matrix corresponding to Fuhrman gra

Grade 1 Grade 2 Grade 3 

Grade 1 1142 16 6 

Grade 2 12 1106 14 

Grade 3 8 17 740 

Grade 4 3 11 32 

Table 3 – The accuracy of Fuhrman grade recognition of the cla

Classifier SVM +
FM

SVM +
GA

SVM +
RF

SVM +
CFS

SVM + FCBF 

Grade 1 0.978 0.967 0.981 0.952 0.971 

Grade 2 0.951 0.947 0.962 0.925 0.948 

Grade 3 0.922 0.898 0.931 0.911 0.918 

Grade 4 0.861 0.859 0.867 0.843 0.860 
been created. It is represented in Table 4. The diagonal
elements depict the number of correctly recognized classes
and the off-diagonal elements – the misclassifications.

On the basis of this matrix the sensitivity and specificity of
the system (the last two columns) have been calculated. The
average accuracy of classification achieved in experiments
was equal 96.7%. The obtained results of sensitivity and
specificity have been compared to the previous best results
presented in [9] for the same database. They are depicted in
Table 5.

The accuracy of the best previous solution [9] was 93.1%. It
is significantly worse than 96.7% achieved now. In respect of all
quality measures (accuracy, sensitivity and specificity) the
improved system performed much better than the best
previous one

The additional experiments have been performed using
only 11 features selected commonly by all selection methods
(Table 6). However, the results were inferior to the best
obtained by the limited ensemble. On the other hand,
removing some highest rank features from the selected sets,
immediately led to decreasing the quality factors of the class
recognition.

These results prove, that the best features used in machine
learning fulfill the most important role, however, the less
de recognition by an ensemble.

Grade 4 Sensitivity Specificity

0 98.1% 98.9%
1 97.6% 98.1%
21 94.1% 98.0%
317 87.3% 99.3%

ssification system in 10-fold cross validation mode.

RF +
FM

RF +
GA

RF +
RF

RF +
CFS

RF +
FCBF

FE LE

0.975 0.965 0.975 0.947 0.972 0.974 0.981
0.950 0.943 0.973 0.932 0.941 0.943 0.976
0.919 0.898 0.943 0.926 0.914 0.917 0.943
0.860 0.857 0.858 0.847 0.860 0.854 0.874



Fig. 3 – The image of clear-cell renal carcinoma subject to the analysis: a) the original image of ROI, b) the ROI image with
recognized and annotated cells.

Table 5 – Comparison of the obtained class sensitivity and
specificity in recognition of the Fuhrman grade of the
cells.

Fuhrman grade Grade 1 Grade 2 Grade 3 Grade 4

Actual sensitivity 98.1% 97.6% 94.1% 87.3%
Previous best sensitivity 96.7% 94.2% 91.6% 84.3%
Actual specificity 98.9% 98.1% 98.0% 99.3%
Previous best specificity 98.2% 95.7% 97.4% 98.7%

Table 6 – The accuracy results of grade recognition using
only 11 features chosen commonly by all selection
methods.

Classifier Grade 1 Grade 2 Grade 3 Grade 4

SVM 0.961 0.932 0.901 0.852
RF 0.957 0.929 0.897 0.847
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important features are also needed to enhance the information
of the problem. This is in concordance with the well-known fact
from genetic theory, that worse fit parents mixed with these of
highest fit may lead to the better off-springs.

The developed approach allows also presenting the results
in a graphical form, which might be very useful in visual
verification of analysis results made by the medical expert.
Fig. 3a presents the original image, which was subject to the
analysis and Fig. 3b its automatically annotated result
presenting the recognized classes of cells. The cells have been
annotated in numerical way, where 1 refers to Fuhrman grade
1, 2 to grade 2 etc.

5. Conclusions

The paper has presented the improved method of Fuhrman
grading recognition in clear-cell renal carcinoma. The signifi-
cant modifications have been introduced in cell segmentation,
feature selection and classification system. The accuracy of
the image segmentation has been significantly increased by
applying the wavelet transformation. Thanks to it the
enhancements of the edges of the cells as well as effect of
denoising the image have been achieved. Better, more
accurate identification of cell nuclei has been obtained in this
way.

The important step in improvement of the quality of the
cell recognition system is application of few feature selection
methods: genetic algorithm, random forest, CFS, FCBF and
Fisher measure. Parallel, independent application of them has
allowed estimating significance of the numerical descriptors
using different mechanism of assessment.

The additional advantage of different selection methods
was creating the base for ensemble of classifiers. The
diagnostic features chosen by the particular methods have
been associated with two efficient classification systems: SVM
and RF, integrated into the final system of cell recognition. The
quality factors of such classification system (accuracy,
sensitivity and specificity) resulting from such integration
are significantly better than these obtained from the single
recognizing unit. The numerical results have confirmed the
increased values of these parameters.

The developed automatic system is characterized by the
repeatability of results in many runs. This is not the case for
the human expert results, which are dependent on the expert
and his/her mental or physical disposition in the time of image
analysis. Moreover, the computer system reduces the compu-
tation time required for the image analysis in comparison to
the time needed by the human expert.

The study presented here will be developed in few
directions. First, the experiments performed on larger data
base (more patient, more cells) should be done to obtain more
objective assessment of the method. There is also need to
increase the number of numerical descriptors and selection
methods. The additional work should be done to find
automatically the regions of interest in the analyzed images.
This is an important task to make system fully automatic.
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