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Abstract—This paper presents a new approach to the 

identification of the state of drill wear and tear during the 

drilling process. Identification provides for three states (classes) 

of drill which were marked according to traffic lights 

classification: red – “useless” (worn out), yellow (still sharp but 

should be manually assessed by a specialist), green -“useful” 

(sharp). Red state indicates symptoms of drill worn out and 

determines that it should not be used during the drilling process 

(does not satisfy the furniture process quality). Yellow drill state 

should draw attention to the fact that the drill may be excessively 

blunt. Later on, it is recommended to assess the drill manually. 

When the system indicates the green state of drill, it means that 

the drill may still be used in the drilling process, maintaining the 

high quality of drill holes. The recognition of drill state is based 

on 5 registered signals: feed force, cutting torque, noise, vibration 

and acoustic emission. The hardest part in the implementation of 

automatic identification of drill condition is to find appropriate 

features, which will separate cases belonging to 3 classes (states). 

When input data are presented in the form of images, we can use 

the convolution neural network, but in that case we have signals 

registered as time series, hence the long-short term memory 

(LSTM) is applied.  

Keywords—deep learning; long short-term memory; tool 

condition monitoring, drill condition. 

I. INTRODUCTION 

Industry development, requirements concerning 

competitiveness and necessity to maintain their high quality 

require that manufacturers maximize the automation of 

technological processes. It does not differ in the wood industry. 

Therefore, the aim of this paper is to develop the foundations 

of an automatic intermediary system (non-invasive) 

identification of the state of drill wear and tear, based on 

selected measurement signals, such as feed force, cutting 

torque, acoustic emission, noise and vibration. The 

development of such a system will allow, in the long term 

perspective, to eliminate the operator from the cutting tool who 

monitors the process and the machining process. It also allows 

automatic exchange of worn tools, which will increase the 

efficiency and consequently will reduce the number of stops, 

decrease production costs and improve quality.  

The problem of automatic cutting supervision, based on 

indirect (non-invasive) identification of this condition, is for 

many years dealt with by many scientific centers around the 

world. The basic component of such a supervisory system is 

the diagnostic tool system [1,2]. 

When determining the blade wear, two diagnostic methods 

can be used: direct and indirect.  

Direct methods are associated with the identification of 

changes in the tool geometry. They are accurate and consist of 

measurement of a specific blade wear and tear indicator [3]. 

Their basic disadvantage is the measurement, which must be 

performed by the operator and requires stopping the machining 

process. 

Indirect methods consist of measuring changes in physical 

quantities, originating from the cutting zone by means of 

suitable sensors [4-12]. These methods are less accurate 

because they depend on many factors, including: selection of 

signals and appropriate measures of these signals related to 

blade wear and tear, measurement accuracy, external factors, 

such as interference with signal recording (e.g. noise) and 

different ways of fixing the sensors. Their main advantage is 

the fact that they enable continuous operation of machines 

eliminating unnecessary stoppage of the machine tool, and 

hence shortening the machine downtime and increasing the 

efficiency of the technological process. 

Therefore, there is a great need to develop and implement 

methods of non-invasive diagnostics, which will eliminate the 

necessity to perform direct measurements of the degree of wear 

and tear of the cutting tool blade. 



In this paper, we discuss the issue concerning the creation of 

novel indirect. We chose the method which allowed us to 

eliminate serious issues of the following approaches: features 

generation and then features selection processes. We chose one 

of the algorithms belonging to a wide learning group, which 

can teach us how to recognize drill conditions without 

providing diagnostic features. This is a novel method long 

short-term memory algorithm (LSTM), which uses time series 

(sequences) to recognize different classes. LSTM will assign 

the current drill state to one of three classes. These classes are 

contractually defined as: "green", "yellow" and "red" (by 

analogy to traffic rules). 

II. MEASUREMENT METHODOLOGY 

Data acquisition was performed using a standard Busellato 

Jet 100 CNC vertical machining centre, which is presented 

below. For experimental purposes, we used laminated 

chipboard and drills with a 12 mm diameter, with tungsten 

carbide tips (Figure 1 and 2). 

 

 
Fig. 1. Drill used in experiments  

 

Fig. 2. Standard laminated chipboard used in experiments 

During the acquisition process, the following physical 

features were collected: 

• feed force (denoted as F), 

• cutting torque (denoted as M), 

• noise (denoted as C), 

• vibration (denoted as V), 

• acoustic emission (denoted as AE), 

All the aforementioned types of signals were registered 

using the following special sensors: 

• AE-acoustic emission measuring system (Kistler 

8152B contact sensor, Kistler 5125B amplifier), 

• V-mechanical vibration measuring system (Kistler 

8141A accelerometer, Kistler 5127B amplifier), 

• C-noise (sound pressure) measuring system (B&K 

4189 microphone and preamplifier, B&K NEXUS 

2690 amplifier), 

• F and M – dynamometer with Kistler 9345A sensor 

and ICAM5073A amplifier. 

The registration of selected signals was performed on the 

computer in the National Instruments Lab ViewTM 

environment, using NI PCI-6034E and NI PCI 6111 data 

memory cards. The use of two cards was justified by the 

presence of signals with different frequencies. The AE 

registration required the use of a relatively high sampling rate 

of 2 MHz, and other signals were recorded at 50 kHz. The 

cards reached signals through BNC - 2110 connection boxes, 

separately for each frequency range. 

Of the six drills used for the experiment, five were subjected 

to blunting cycles, and one served as a control. The control drill 

was used only to record signal measurements, in order to 

compare the signal waveform. Registered signals of the 

reference drill (sharp enough) were also used to create a 

teaching set of a non-invasive system, identifying the state of 

the tool. 

While monitoring the degree of wear and tear of the blades, 

the external corners of drills were collected with a digital 

microscope camera (Figure 4). The data obtained during 

microscopic measurements allowed to determine that the 

standard W index (the size of the external corner of the drill) 

may be useful in practice as a direct indicator of the wear and 

tear status of the drills when processing laminated particle 

boards. 

 

 

Fig. 3. Determining the size of the wear indicator of the external corner 
(W) of the drill 

 The state of tool wear and tear is assessed on the basis of W 

index. However, it was recognized that for practical purposes 



there is no need to estimate the current value of W, because the 

most important is to distinguish three different states of the 

tool, which are referred to as “green”, “yellow” and “red”. 

 

III. DATABASE 

The basis for the determination of states (red, yellow, green) 

are the appropriate ranges of W values. The upper limit of the 

green state is generally accepted in the operation of tools and 

from the literature data and recommendations of tool 

manufacturers it follows that tool classes up to 0.2 mm are 

perfectly acceptable. The lower limit of the red state was 

adopted on the basis of literature data [13]. Yellow state is set 

between them. The classification concerning drill wear and tear 

is presented in Table 1. Each class is assigned a label on the 

basis of which the classification is made, i.e. the division of 

input data. 

TABLE I.  CLASSIFICATION BY WEAR AND TEAR CLASS 

Wear ranges (W) 

[mm] 
Class name 

<0.2 Green 

<0.2-0.35> Yellow 

>0.35 Red 

 

 During the data acquisition, special sensors collected 

totally 242 time series of 5 different physical quantities. Data 

distribution is presented in Table 2. 

TABLE II.  DATA SETS ACQUIRED IN EXPERIMENTS 

Number 

of drill 

Number of 

trials for 

green class 

Number of 

trials for 

yellow class 

Number of 

trials for 

red class 

Total 

number 

of trials 

0 27 0 0 27 

1 15 10 20 45 

2 20 10 15 45 

3 15 10 10 35 

4 10 15 20 45 

5 15 15 15 45 

Drill No. 0- reference drill Total: 242 

 

 In Table 3, the summary of training and testing sets is 

presented. It was assumed that the system is taught on 4 drills 

plus the control drill, which is the training set. The test set 

constitutes the fifth drill. The result is 5 sets, because each drill 

has a test function in turn. 

TABLE III.  STATEMENT OF TRAINING AND TESTING SETS 

Number of test Training set Test set 

1 197 45 

2 197 45 

3 207 35 

4 197 45 

5 197 45 

Reference drill – always training set 

 

IV. LONG SHORT TIME MEMOERY ALGORITHM 

To avoid spending time on generation and then selection of 

processes of diagnostic features to classify drill state to one of 

3 classes (green, yellow, red), we were looking for a new 

algorithm, which will not require handcrafted diagnostic 

features provided to classifier. One of the most efficient and 

popular group of algorithms is deep learning. Deep learning, or 

the so-called deep structured learning or deep machine 

learning, is currently a very popular classification approach, 

especially efficient in case of images [14-18]. But in this 

approach we do not have images as input, so we had to find an 

algorithm, which can provide time series data as input.  

 One of the novel approach in deep learning algorithms 

group for times series purposes is long short-term memory 

(LSTM). This network is much faster than the previous 

recurrent network algorithms, such as RTRL, BPTT, Recurrent 

Cascade-Correlation, Elman nets, Neural Sequence Chunking 

and solves complex and artificial long time tasks [19]. In case 

of Back-Propagation Through Time (BPTT), we can have 

oscillating weights, while Real-Time Recurrent Learning 

(RTRL) takes a lot of time. Sometimes it does not work at all 

[19]. The solution to overcome error back-flow issues is the 

LSTM approach. LSTM is able to learn how to bridge time 

intervals in excess of 1000 steps, even when we have too much 

noise in signal or incompressible input sequences and, most 

importantly, does not lose short-time lag capabilities [19]. It is 

caused by an efficient gradient-based algorithm, which 

dynamically changes the “constant” error flow through internal 

states of special units. For example, gradient computation is cut 

at certain architecture-specific points without impact on long-

term error flow [19].  

 LSTM network in the form of classification approach 

usually consists of 5 layers: sequence input layer, LSTM layer, 

fully connected layer, softmax layer and classification layer 

[20].  Of course, if we want to have a more deep network, we 

can add more sequence LSTM layers, but learning time will be 

much slower than in the case of only one LSTM layer. 

Sequence input layer size must be the size of feature dimension 

of input signal, while the size of fully connected layer should 

constitute an equal number of classes for classification 

purposes (3 classes in this paper). 

V. NUMERICAL EXPERIMENTS 

Our database consists of 242 trials of 5 measured physical 

quantities, such as: feed force (F), cutting torque (M), noise 

(C), vibration (V) and acoustic emission (AE).  For every 

signal, we applied 1024 trial window lengths. So, it means that 

we divided time series into 58 windows of 1024 length. For 

every window in time series we calculated 32 points DFT 

(Discrete Fourier transform). So, we have 5 (signals) x 32 

points DFT, totally 160 features, as well as Spearman and 

Pearson correlation between signals. Thus, we finally obtained 

242 trials with 180 features of 58 sequences.  

During experiments we tested many architectures, but 

finally the following architectures provided the best results: 



1. Sequence Input          Sequence input with 180 

dimensions 

2. LSTM layer                    LSTM with 500 hidden units 

3. LSTM layer                    LSTM with 200 hidden units 

4. Fully Connected         3 fully connected layer (3 classes) 

5. Softmax                 softmax 

6. Classification Output   crossentropyex  

We collected 242 trials on the basis of 6 drills (one of 

them is the reference drill). According to wood technology 

specialists, we decided to teach LSTM using all trials belongs 

to 5 drills and testing on the last drill. It means that every drill 

will be intended for testing and none of its trials takes part in 

the training process.  

VI. NUMERICAL EXPERIMENT RESULTS 

 We performed 6 tests in which every drill plays the role of 

the testing drill. According to wood technology specialists, the 

results at the level of 81% are satisfying from the point of view 

of the production process. Details of numerical experiment 

results are presented in Table 4. 

TABLE IV.  RESULTS OF APPLYING LSTM IN DRILL CONDITION 

CLASSIFICATION TO 3 CLASSES (GREEN, YELLOW, RED) ON THE BASIS OF 242 

TRIALS . 

Number of drill tested 
Training  

accuracy 

Testing 

accuracy 

Drill 1 100% 100% 

Drill 2 100% 88.89% 

Drill 3 100% 77.78% 

Drill 4 100% 65.71% 

Drill 5 100% 88.89% 

Drill 6 100% 66.67% 

Average 100% 81.32% 

VII. CONCLUSION 

 This paper presents the application of the long short-term 

memory (LSTM) network in the recognition of the state of the 

drill on the basis of the set of 5 registered different types of 

physical quantities. 

 The main advantage of such approach is the application of 

time series or any other sequences (DFT in this paper) to one of 

deep learning algorithms, without spending too much time on 

hand-crafted feature generation.  

 The presented results of numerical experiments confirmed 

good performance at the level of 81% in the recognition of 

three sharpness states of the drill and based on wood 

technology specialists, they can be applied in production 

processes. 
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