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a b s t r a c t 

Background and objective: The aim of computer-aided-detection (CAD) systems for mammograms is to 

assist radiologists by marking region of interest (ROIs) depicting abnormalities. However, the confusing 

appearance of some normal tissues that visually look like masses results in a large proportion of marked 

ROIs with normal tissues. This paper copes with this problem and proposes a framework to reduce false 

positive masses detected by CAD. 

Methods: To avoid the error induced by the segmentation step, we proposed a segmentation-free frame- 

work with particular attention to improve feature extraction and classification steps. We investigated 

for the first time in mammogram analysis, Hilbert’s image representation, Kolmogorov–Smirnov distance 

and maximum subregion descriptors. Then, a feature selection step is performed to select the most dis- 

criminative features. Moreover, we considered several classifiers such as Random Forest, Support Vector 

Machine and Decision Tree to distinguish between normal tissues and masses. Our experiments were car- 

ried out on a large dataset of 10168 ROIs (8254 normal tissues and 1914 masses) constructed from the 

Digital Database for Screening Mammography (DDSM). To simulate practical scenario, our normal regions 

are false positives asserted by a CAD system from healthy cases. 

Results: The combination of all the descriptors yields better results than each feature set used alone, 

and the difference is statistically significant. Besides, the feature selection steps yields a statistically sig- 

nificant increase in the accuracy values for the three classifiers. Finally, the random forest achieves the 

highest accuracy (81.09%), outperforming the SVM classifier (80.01%)) and decision tree (79.12%), but the 

difference is not statistically significant. 

Conclusions: The accuracy of discrimination between normal and abnormal ROIs in mammograms ob- 

tained with the proposed gray level texture features sets are encouraging and comparable to these ob- 

tained with multiresolution features. Combination of several features as well as feature selection steps 

improve the results. To improve false positives reduction in CAD systems for breast cancer diagnosis, 

these features could be combined with multiresolution features. 

© 2018 Elsevier B.V. All rights reserved. 

1

 

o  

w

K

e

2  

m  

d  

d  

h

0

. Introduction 

Breast cancer is the most diagnosed female cancer and the sec-

nd leading cause of cancer deaths among women worldwide. In
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012, this disease affected 1.67 million new cases (25% of all fe-

ale cancers) and killed 522,0 0 0 women (14.7% of cancer-related

eaths) [8] . Breast cancer is arising from cells of the breast that

evelops locally in the breast and metastasizes to the lymph nodes

nd internal organs. Even though some studies pointed out several

isk factors of having breast cancer such as genetics and tobacco,

he cause of cell metastasize is not clearly known. This makes

arly prevention of breast cancer not possible. Thus, early detec-

ion is considered as the cornerstone in breast cancer treatment.

 breast cancer detected at early stage is easy to handle, whereas
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late detection decreases treatment options and increases mortal-

ity rates. Unfortunately, traditional detection methods such as pal-

pable breast examination or clinical women request (after pain)

usually detect cancers at non-recoverable stages. Screening pro-

grams are applied to cope with this issue: women with higher risk

(such as old women) but with no clinical symptoms are examined.

The best cost-effective tool for breast cancer detection is currently

screening mammography. It can detect breast abnormalities at an

early stage when they are not detectable by a woman or doctor,

what increases very significantly the chance of cure [16] . For in-

stance, several developed countries established systematic nation-

wide screening mammography programs for early breast cancer

detection: each woman over 50 years undergoes a mammography

examination every two (or three) years. These programs helped in

reducing the mortality rate of breast cancer [13,27] . 

However, mammography interpretation is a difficult and error

prone task, even for skilled radiologists, mainly due to the sub-

tle signs of breast abnormalities and the overlapping dense fibro-

glandular tissue. Misinterpretation of mammograms leads to false

positives and/or false negatives. False positives -taking normal tis-

sue for abnormalities- result in high recall rates with unnecessary

treatments (such as invasive biopsies). False negatives -missing a

cancer abnormality- complicate treatment options and threaten

patient life. Due to the huge amount of screening mammograms to

be analyzed and the limited number of radiologists double read-

ing by a second radiologist is not feasible in screening programs.

A cost-effective alternative to human double reading is the use of

Computer Aided Detection systems (CAD), which may replace the

second reader and alert the radiologist to suspicious regions. These

systems have improved the detection rates of breast abnormalities

such as micro-calcification and masses. Given that the detection

of masses is much more challenging because some normal tissues

may look visually similar to masses and can be taken for abnor-

malities, the aim of this work is to reduce mass false positives

produced by CAD systems. Indeed, the main drawback of CAD sys-

tems for masses is false positives, which may increase unnecessary

biopsy rates. Besides, given the low rate of cancer occurrence in

screening programs, radiologists may over-look CAD outputs that

contain suspicious regions. Hence, a posterior step of reduction of

false positive rates in CAD systems is crucial to reduce unneces-

sary follow-up treatments and to ensure radiologistâs acceptance.

Indeed, two issues are typically addressed in computer-aided de-

tection of mammographic masses. The first one is the detection

step, which aims to localize candidate ROIs that may depict abnor-

malities. The second is false positive reduction step, which aims to

detect and eliminate normal ROIs. In this paper, we assume that

we have already ROIs from the detection step and, thus, we ad-

dress only the false positive reduction step. 

Several studies have focused on reducing false positives for

masses. Hence, given suspicious regions detected by a CAD sys-

tem, false positive reduction (FPR) methods aim to classify these

regions as normal or abnormal. A first class of methods aimed

to include information from the current mammogram or other

views. For instance, Vállez et al. [30] included a breast density

classification step prior to lesion detection so that to improve the

detection results. Li et al. [22] used a bilateral similarity analy-

sis to combine information from right and left breast views. Tan

et al. [29] proposed a score fusion to combine detection results of

medio-lateral oblique (MLO) view and cranio-caudal (CC) view. A

second class of methods solved the pattern recognition problem of

distinguishing between normal tissues and masses in three steps:

lesion segmentation, feature extraction, and binary classification.

For instance, Junior et al. [17] used a spatial approach of diver-

sity indexes to describe patterns detected in previously segmented

regions and a SVM classifier to classify regions into masses and

non-masses. Liu and Zeng [24] used adaptive region growing and
arrow band based active contour for mammographic masses seg-

entation, gray level co-occurrence matrix (GLCM) and complete

ocal binary patterns (CLBP) for the description of the segmented

esions, and SVM for classification. de Sampaio et al. [5] performed

asses segmentation based on micro-genetic algorithm. Then, Lo-

al binary patterns and SVM were used to classify the suspicious

egions. However, the segmentation of mammographic masses is

 very difficult task and error-prone. Therefore, some authors pro-

osed to omit the segmentation step and to compute the feature

ector directly from the ROI. For instance, Dhahbi et al. [6] pro-

osed a multiscale texture analysis method for false positive re-

uction based on curvelet moments. Curvelet transform was first

erformed on region of interest (ROI). Moment statistics (mean,

ariance, kurtosis and skewness) were then computed from each

urvelet band and were input into a k-nearest-neighbor (kNN)

lassifier. A feature selection step was also included to select the

ost relevant curvelet moments. Zyout et al. [32] reduced false

ositive of mass detection based on multiscale textural feature

xtraction, particle swarm optimization and support vector ma-

hines (SVM) classification. Hussain [14] introduces a method for

alse positive reduction based on Weber law descriptor (WLD) and

VM classification. Scale-invariant feature transform (SIFT) features

ave been used to describe mammographic ROIs for scalable mam-

ogram retrieval [15,23] . 2D wavelet transform modulus maxima

ethod (WTMM), that was originally introduced to perform mul-

ifractal analysis of rough surfaces using the continuous wavelet

ransform [1] , has been applied to quantify the roughness fluc-

uations in mammographic images and to segment these images

nto dense tissue regions, fat tissue regions and micro-calcifications

19] . Batchelder et al. [2] used the WTMM method to detect micro-

alcification in human breast tissue in mammograms and to char-

cterize the fractal geometry of benign and malignant microcalcifi-

ation clusters, the former being Euclidean whereas the latter be-

ng fractal. 

Our main motivation in this work is to improve the perfor-

ance of mammographic masses detection through false-positive

eduction. To avoid the error induced by the segmentation step

nd to take into account the texture around the lesion [9–11,25] ,

e proposed a segmentation-free framework with particular at-

ention to improve feature extraction and classification steps. The

owchart of the proposed framework is given in Fig. 1 . 

Hence, we propose five different feature extraction methods to

escribe mammographic regions. The first method extracts 23 fea-

ures based on Hilbert’s image representation. The second method

ses fractal texture analysis to extract 36 features. The third set

s composed of 38 Kolmogorov–Smirnov distances. The fourth set

onsists of 15 features corresponding to statistics from the gray

evel co-occurrence matrix (GLCM). The last method is based on

-S statistic and Minkowsky approach to compute 10 features cor-

esponding to maximum sub-region descriptors. To the best of our

nowledge, Hilbert’s image representation, Kolmogorov–Smirnov

istances and maximum sub-region descriptors are introduced for

he first time for mammographic masses analysis and false posi-

ive reduction. Once the 122 features are computed, we performed

 sequential feature selection method to choose the most discrim-

native subset. For the classification step, even though the SVM

lassifier is the most common classifier for mammographic masses

lassification, other classifiers could yield better results. Therefore,

e investigated three different classification methods: SVM, deci-

ion tree and random forest. The main contributions of the paper

re as follows: 

1. Effective representation of mammographic masses through

Hilbert’s image representation, Kolmogorov–Smirnov distances

and maximum sub-region descriptors. 
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Fig. 1. Flowchart of the proposed framework. 
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Fig. 2. Illustration of region of interest (ROI) extraction. 

Fig. 3. Sample of ROIs from the DDSM database. 
2. Combination of the proposed three feature sets with two other

commonly used sets: fractal texture features and gray level co-

occurrence matrix statistics. 

3. Selection of the most discriminative features for masses de-

scription. 

4. Investigation of three different classification methods. 

5. Experimental evaluation of the proposed framework in a large

and challenging database Fig. 3 . 

The rest of this paper is organized as follows. Sections 2 de-

cribes the used mammograms in the experiments.

ection 3 presents the feature extraction methods we used to

enerate diagnostic features. Section 4 recalls the feature se-

ection method. Section 5 is devoted to numerical experiments.

onclusions are stated in Section 6. 

. Materials and methods 

.1. Materials 

Our experimental dataset is constructed from the Digital

atabase for Screening Mammography (DDSM) [12] , which is the

argest public mammogram dataset. DDSM is an old database

hat includes 2604 cases made from digitized films, each case is

omposed of four mammograms corresponding to Cranial-Caudal

CC) and Medio-Lateral-Oblique (MLO) views for right and left

reasts. The dataset includes the ground truth of each mammo-

ram, mainly its diagnostic result (normal, benign or malignant)

nd the location of existing lesions. 

Our experiments are carried out on a large dataset of 10,168

OIs (8254 normal tissues and 1914 masses) constructed in

15] from the DDSM. For this, Jiang et al. [15] used a CAD program

31] to detect masses. False positives asserted by this CAD system

rom healthy cases [31] are our normal regions. For ROIs depict-

ng masses, a manual cropping was performed to extract rectan-

ular areas centered on the coordinates of lesions provided in the

round truth ( Fig. 2 ). Hence, compared to common databases in

hich normal cases are randomly selected, our dataset is more re-

listic and more challenging [15] . 

In the experiments, all the ROIs were resized to 256 × 256 pix-

ls. Fig. 2 illustrates examples of ROIs used in the experiments. 
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Fig. 4. Example of discrete Hilbert’s curve for order 0 to 5. 
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2.2. Generation of diagnostic features 

Our whole database of masses consists of totally 10,168 cropped

images (ROIs). This set has been divided into normal tissues and

abnormal tissues, based on accurate diagnosis performed manually

by doctors. Our approach now is to generate features that have the

capability to distinguish between normal tissues and masses. 

During the manual analysis of the images of normal and ab-

normal tissues, it is easy to notice that the main differences be-

tween normal tissues and masses are connected with the shape,

size, granularities, texture and intensity of the images associated

with different states of tissues. In our approach to this problem,

we will base on the features referred to characteristics of chaotic

image, changes in the features distribution, co-occurrence Haral-

ick’s matrix, fractal dimension and regular statistical features. 

On the basis of all extracted ROIâs, we generated 122 potential

diagnostic features in total for binary classification. Features have

been extracted based on every gray-scale image from the whole

database. The dataset of potential diagnostic features consists of

the following groups: 

• features generated based on Hilbert’s image representation (35

features) . 
• features generated based on coaxial rings image representation

and Kolmogorov–Smirnov distance approach (14 features). 
• features generated based on Maximum regions descriptors (6

features). 
• features generated based on forest fire modeling (2 features). 
• features generated based on the gray-level co-occurrence ma-

trix - GLCM (4 features). 
• features generated based on box-counting fractal dimension (9

features). 
• features generated based on segmentation-based fractal texture

analysis (36 features). 
• features generated based on 4-level wavelet packet decomposi-

tion (16 features). 

2.2.1. Hilbert’s image representation 

A Hilbert curve or Hilbert space-filling curve is a continuous

fractal space-filling curve, first described by the German mathe-

matician David Hilbert in 1891. It was one variant of filling space

with curves discovered by Giuseppe Peano in 1890. The Hilbert’s

curve ( Fig. 4 ) appears to have useful characteristics. 

Both the true Hilbert curve and its discrete approximations are

useful because they provide a mapping between 1D and 2D space

that fairly well preserves locality [15,26] . 

For many extracted features (especially statistical features),

where one dimensional matrix (vector) is required as an algorithm

input, we should find the best representation of every grayscale

image. One of the best 1-dimensional image representation is the

application of the Hilbert’ curve. One-dimensional matrix is the re-

sult of covering discrete Hilbert’s transformation mask for the im-

age. Hence, this one dimensional matrix can be treated as a vector

and can be a base for any feature extraction algorithm, where one

dimensional matrix is strictly required. 

Let’s assume that we have to fill the space with curves and

the space has a square size n × m , where n is the power of 2

(e.g. 4, 8, 16, 32). Hilbert’s curves of order 0 to 5 are depicted on

Fig. 4 . Based on the above assumption, we can generate the dis-

crete Hilbert’s curves using the following recursive formula: ⎧ ⎪ ⎨ 

⎪ ⎩ 

x 0 = 0 

y 0 = 0 

x n = 

1 
2 

[(y n −1 − 0 . 5)(x n −1 − 0 . 5)(x n −1 + 0 . 5)(−y n −1 + 0 . 5)] 

y n = 

1 
2 

[(x n −1 − 0 . 5)(y n −1 + 0 . 5)(y n −1 + 0 . 5)(−x n −1 − 0 . 5)] 

(1)

The advantages of applying the discrete Hilbert’s curve for one-

dimensional image representation are as follows: 
• mapping between 1D and 2D space fairly well preserves locality
• when we follow every point of discrete Hilbert’s curve, we fol-

low through the image neighbor pixels 
• if ( x, y ) are the coordinates of a point within the unit square,

and d is the distance along the curve, when it reaches that

point, then the points that have nearby d values will also have

nearby ( x, y ) values. 

In this article, we have constructed the Hilbert’s curve of or-

er 1024. Then the discrete Hilbert’s curve has been mapped to

he image. The last stage is the creation of a vector image rep-

esentation, which consists of all points of the discrete Hilbert’s

urve. The Matlab code generating the discrete Hilbert’s curve is

resented below: 

function [x,y] = hilbert(n) 

if n < = 0 

x = 0; 

y = 0; 

else 

[xo,yo] = hilbert(n-1); 

x = .5 ∗[-.5+yo -.5+xo .5+xo .5-yo]; 

y = .5 ∗[-.5+xo .5+yo .5+yo -.5-xo]; 

end 

.2.2. Potential 35 features generated based on Hilbert’s image 

epresentation 

After converting matrix image representation to vector image

epresentation in the form of the discrete Hilbert’s curve, the au-

hors have applied many statistic measures where a vector form is

equired as an input. Some of these statistic measures applied by

he authors are presented in Table 1 . In Total, the authors defined

7 statistic features on the basis of the discrete Hilbert’s curve im-

ge representation. 

.2.3. Kolmogorov–Smirnov distance 

For some new texture segmentation features generated from

he images, the authors have applied Kolmogorov Smirnov (KS)

tatistical distance. Some propositions of applying this statistical

easure to the medical image characterization have been already

resented in (Demidenko, 2004, Pauwels and Frederix, 20 0 0). 

The KS test determines if the samples are drawn from the same

nderlying continuous population characterized by the cumulative
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Table 1 

Some statistical features based on Hilbert’s curve 

image representation. 

Name Equation 

Mean μ = 

1 
n 

∑ n 
i =1 x i 

Standard deviation σ = 

1 
n 

√ ∑ n 
i =1 (x i − μ) 2 

Skewness S = 

1 
n 

∑ n 
i =1 ( 

x i −μ
σ ) 3 

Kurtosis K = 

1 
n 

∑ n 
i =1 ( 

x i −μ
σ ) 4 − 3 

RMS 

√ ∑ n 
i =1 | x i | 

n 

Crest factor C = 

X peak 

x RMS 

Fig. 5. Example of Kolmogorov–Smirnov test statistic. 
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Fig. 6. Representation of the neighborhood pixel as coaxial rings. 

Fig. 7. Subdivision of image into 17 × 17 subimages. Each subimage is represented 

by a set of 4 coaxial rings. 

Table 2 

Calculation of Kolmogorov–Smirnov distance between 

coaxial rings. 

No Ring i Ring j Skipped level ( | i − j| ) KS 

1 1 2 1 KS1 

2 1 3 2 KS2 

3 1 4 3 KS3 

4 2 3 1 KS4 

5 2 4 2 KS5 

6 3 4 1 KS6 

o

d  

w  

s

 

K  

T

2

 

c  

s  
istributions F ( x i ) and F ( x j ) ( Fig. 5 ). The distance between these

wo populations is defined by the KS test in the following formula:

 KS = max | F (x i ) − F (x j ) | (2)

.2.4. Representation of the neighborhood pixel as coaxial rings 

The aim of this approach is to find features which provide

s with the information on the evolution of the 3-dimensional

R,G,B) pixelâs distribution surrounding this point [21] . These fea-

ures should indicate what is a pace of changes of neighborhood

ixel colors distribution. In our experiment, only the grayscale im-

ge has been taken into consideration, hence, we should mea-

ure the pace of changes of pixel intensity distribution. To exe-

ute the calculation in a reasonable time, only 4 coaxial rings have

een constructed, each ring is composed of 56 pixels ( Fig. 5 ). To

ompare mentioned distribution, we performed the Kolmogorov–

mirnov test. The representation of the neighborhood pixel in the

orm of coaxial rings has been depicted on Fig. 6 . 

Instead of constructing coaxial rings for the whole image, we

ivided the image into subimages of equal size and we constructed

oaxial rings for each subimage ( Fig. 7 ). For this, analyzed gray

cale image was scaled to 289 × 289 pixels and subdivided into

89 subimages of size 17 × 17 pixels. A set of 4 coaxial rings was

hen constructed for each subimage. In this way, each image is rep-

esented by 289 sets of coaxial rings. 

For every set of 4 coaxial rings corresponding to a subimage,

e compute the KS distances between proper rings as described in

able 2 . 

Once the KS distances were computed for all subimages of a

iven image, we calculated the average KS statistic of coaxial rings

f the same level. Then, we performed linear regression to the rela-

ionship of the average and median KS distance d as the function
KS 
f the level l ( Eq. (3) ). 

 KS = α0 + α1 l + ε (3)

here l denotes skipped level, and α0 and α1 represent the regres-

ion coefficients. 

Finally, based on coaxial rings image representation and

olmogorov–Smirnov distance, 14 features have been calculated.

hese features have been presented in Table 3 . 

.2.5. Maximum regions descriptors 

The main idea is to observe disaggregating the image to smaller

onsistent subgroups on the basis of the thresholding. We have

earched for the threshold level from which most subgroups are
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Table 3 

Definition of 14 features based on coaxial rings image representation and 

Kolmogorov–Smirnov distance approach. 

No Definition Description 

1 d KSmean 12 mean of KS statistics between ring No. 1 and ring No. 2 

2 d KSmean 13 mean of KS statistics between ring No. 1 and ring No. 3 

3 d KSmean 14 mean of KS statistics between ring No. 1 and ring No. 4 

4 d KSmean 13 
d KSmean 12 

d KSmean 13 over d KSmean 12 ratio 

5 d KSmean 14 
d KSmean 12 

d KSmean 14 over d KSmean 12 ratio 

6 α0 mean intercept coefficient of approximation line d KSmean 

7 α1 mean slope coefficient of approximation line d KSmean 

8 d KSmedian 12 median of KS statistics between ring No. 1 and ring No. 2 

9 d KSmedian 13 median of KS statistics between ring No. 1 and ring No. 3 

10 d KSmedian 14 median of KS statistics between ring No. 1 and ring No. 4 

11 d KSmedian 13 
d KSmedian 12 

d KSmedian 13 over d KSmedian 12 ratio 

12 d KSmedian 14 
d KSmedian 12 

r d KSmedian 14 over d KSmedian 12 ratio 

13 α0 median intercept coefficient of approximation line d KSmedian 

14 α1 median slope coefficient of approximation line d KSmedian 

Fig. 8. Input image for maximum regions descriptors approach. 

Fig. 9. Output image for maximum regions descriptors approach. 

 

 

 

 

 

 

 

 

 

Fig. 10. Image input of forest fire modeling approach. 

Fig. 11. Setting fire to the forest. 

T  

h

2

 

c  

i  

r  

m  

c  

8

 

t

 

T

q  

a

2

a

 

o  

h  

a  

f

derived. To obtain the result for dozen thousands images in a rea-

sonable period of time, percentiles of pixels intensity have been

applied. For each image, we search for the quantile q and its in-

tensity threshold value th q , which splits the image into the largest

number of compact groups of pixels. The searching is performed

using the quantiles of pixel’s intensity, i.e., 0.01, 0.02, ... , 0.99.

The application of Maximum Regions Descriptors application is de-

picted on Figs. 8 and 9 . 

After finding the threshold associated with disaggregating the

image to most subgroups, we can obtain values of our 3 features.
hese features can be calculated for order operators < and > ,

ence we have a total of 6 features ( Table 4 ). 

.2.6. Percolation coefficients 

The goal in this approach is the use of forest fire modeling to

reate a potential diagnostic feature based on an image. The idea

s based on 9 thresholds (for each decile) of a an image. For every

esult of thresholding we start setting fire to the forest and then

easure the duration of the fire (number of iterations). The fire

an be spread only on thresholded area. The authors have applied

 neighborhood pixels. 

The results of stages of 3 of the described process applied to

he image on Fig. 9 are depicted on Figs. 10–13 . 

The output of this process applied to this example is showed in

able 5 . 

Finally, we computed a potential feature q w 

as follows: 

 w 

= 

∑ 9 
i =1 q i d i ∑ 9 

i =1 d i 
(4)

The above equation can be applied to two order operators ( ≥
nd ≤ ), resulting thus in 2 potential features. 

.2.7. Potential 4 features from the gray-level co-occurrence matrix 

nd other statistics 

Four features have been generated using gray-level co-

ccurrence matrix (GLCM) from a given image. GLCM calculates

ow often a pixel with the gray-level value i occurs adjacent to

 pixel with the value j. Based on the GLCM approach, 4 potential

eatures have been generated and presented in Table 6 : 
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Table 4 

Definition of 6 features based on maximum regions descriptors approach. 

No Definition Description 

1 p ≥ associated value of percentile (percentile to intensity: 0.01 â0 ; 0.99â255) for sign ≥
2 q ≥ associated percentile (order of quantile) for sign ≥
3 a ≥ area of largest subgroup for sign ≥
4 p ≤ associated value of percentile (percentile to intensity: 0.01 â0 ; 0.99â255) for sign ≤
5 q ≤ associated percentile (order of quantile) for sign ≤
6 a ≤ area of largest subgroup for sign ≤

Fig. 12. Image after a few iterations. 

Fig. 13. Result of forest fire modeling after 40 iterations. 

Table 5 

Result of forest fire modeling. 

q i d i 

0.1 31 

0.2 40 

0.3 31 

0.4 30 

0.5 40 

0.6 24 

0.7 29 

0.8 27 

0.9 22 

Table 6 

Definition of 4 features from histogram of co-occurring gray-scale 

(GLCM). 

Name Description 

Contrast measure of the intensity contrast between 

a pixel and its neighbor over the whole image 

Correlation measure of how correlated a pixel is to its 

neighbor over the whole image 

Energy sum of squared elements in the GLCM 

Homogeneity measure of the closeness of the distribution of 

elements in the GLCM to the GLCM diagonal 

2

 

i  

d  

t  

c  

a  

c  

h  

o  

(

d

2

a

 

b  

A  

s  

t  

t  

o  

[  

S  

e  

u

2

 

(  

o  

t

E

w

a

3

 

1  

t  

q  

n

 

o  

n  

a  

c  

e  

f  

f  

w

.2.8. Potential 9 features based on box-counting fractal dimension 

The box-counting fractal dimension is a measure characteriz-

ng the fractal complexity. It is the particular case of the Man-

elbrot fractal dimension, based on the notion of self-similarity of

he structure at different scales. It measures how the length of the

omplex curve changes when the measurement is performed with

n increased accuracy [28] . To characterize any curve, this curve is

overed with the set of regular squared areas of size ε. Thus, we

ave to calculate the number of squared areas containing any part

f the given curve. Then number of found areas is denoted as N( ε)

 Formula 5 ). In our approach, we have used 9 boxes. 

 = lim 

ε→ 0 

log(N(ε)) 

log( 1 ε ) 
(5) 

.2.9. 36 Features on the basis of segmentation-based fractal texture 

nalysis 

This approach allows us to generate 36 texture features on the

asis of the SFTA algorithm (Segmentation-based Fractal Texture

nalysis) and returns 16 vectors extracted from the input gray

cale image. Applying 6th fractal order, we can obtain 36 tex-

ure features. The SFTA algorithm decomposes images into various

hresholded images using several sets of lower and upper thresh-

ld values. The implementation has been based on Costa approach

3] . Thresholded images are used to extract the fractal dimension.

ince images with more jagged edges and prominent color differ-

nces tend to have higher fractal dimension, images with more

niform texture properties will have a lower fractal dimension. 

.2.10. 16 Features based on 4-level wavelet packet decomposition 

In this approach, the authors have applied Daubechies wavelets

db10) family [4] . After wavelet packet decomposition, the portion

f energy for every terminal node has been calculated based on

he following equation ( Formula 6 ): 

 = �N 
k =1 | S jk | 2 (6) 

here N is the number of wavelet sub-bands, k is a counter and S jk 
re the appropriate discrete wavelet transformation coefficients. 

. Features selection 

To choose the most appropriate diagnostic features amongst the

22 potentially available ones, best separating the two classes of

issues (normal and abnormal), we have applied the method of se-

uential feature selection to create a subset of the most discrimi-

ative features for breast cancer diagnosis. 

This approach begins with an empty set and iteratively adds

ne feature among the remaining available features until there is

o improvement in prediction [26] . At each stage, every feature

mong the remaining available ones is added to the current set to

onstruct candidate feature subsets. Each candidate feature set was

valuated using an SVM classifier and 10-fold cross-validation. The

eature that yields the best classification rate for the new enlarged

eature set is selected. After applying sequential features selection,

e obtained 48 diagnostic features from the 122 available ones. 
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Table 7 

Accuracy (mean ± Standard deviation) of binary classification (nor- 

mal vs. abnormal tissues) of mammography images using SVM, De- 

cision tree and Random forest. 

Feature set SVM Decision tree Random forest 

GLCM 63.32% 63.19% 64.66% 

( ± 2.43) ( ± 2.13) ( ± 3.40) 

Fractal analysis 66.61% 64.55% 67.36% 

( ± 2.79) ( ± 2.23) ( ± 2.17) 

Hilbert’s image 57.18% 58.18% 61.88% 

representation ( ± 2.15) ( ± 2.71) ( ± 3.23) 

Kolmogorov- 55.87% 55.66% 58.22% 

Smirnov ( ± 2.31) ( ± 1.90) ( ± 2.39) 

Maximum 60.26% 62.92% 61.52% 

sub-regions ( ± 2.13) ( ± 2.71) ( ± 2.63) 

All descriptors 71.63% 70.11% 71.42% 

(without FS a ) ( ± 0.96) ( ± 2.53) ( ± 3.14) 

All descriptors 80.01% 79.12% 81.09% 1 

(with FS a ) ( ± 5.05) ( ± 5.51) ( ± 4.51) 

a FS: feature Selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Accuracy (mean ± Standard deviation) compari- 

son of the proposed method against state-of-the-art 

methods for binary classification (normal vs. abnor- 

mal tissues) of mammography images. 

Method Accuracy 

(mean ± Std) 

Biggest curvelet coefficients 80.65% ± 0.65 

Statistical curvelet coefficients 80.01% ± 0.58 

Co-occurrence matrix 80.69% ± 0.52 

of curvelet coefficients 

Curvelet moments 86.46% ± 0.91 

Proposed method 81% ± 4.5 
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4. Experimental study 

In the experiments, we evaluated the performance of each pro-

posed feature set for false-positive mammographic mass reduction.

Furthermore, to highlight the importance of combining feature sets

and feature selection steps, feature sets composed of all proposed

descriptors (with and without feature selection) were considered.

We have applied three types of classifiers: SVM, decision tree and

random forest. For numerical experiments, the equal subset of nor-

mal and abnormal tissues trials have been chosen in a random-

ized approach. The 10-fold stratified cross validation has been per-

formed to compute the classification accuracy of each classifier. 

4.1. Results 

Table 7 summarizes the classification results achieved by the

different proposed feature sets using SVM, decision tree and ran-

dom forest classifiers. Hence, accuracy is calculated as the ratio of

normals classified as normals and total of normals. 

We can see that feature sets obtained through the combina-

tion of all the descriptors (with and without feature selection)

yield better results than each feature set used alone, regardless

the classification method that is used, and the difference is sta-

tistically significant. This proves the usefulness of the combination

step. Besides, the feature selection step increases the accuracy val-

ues for the three classifiers, and the improvement is statistically

significant. Finally, the random forest achieves the highest accuracy

(81.09%), outperforming decision tree (80.01%) and the SVM clas-

sifier (79.12%) that is commonly used for mammographic masses

classification, but the difference is not statistically significant. 

For comparison purposes, we implemented state-of-the-art

curvelet-based mammogram characterization. Indeed, we have al-

ready used multiresolution texture analysis for mammogram char-

acterization, and the proposed curvelet moments set outperforms

state-of-the-art curvelet-based mammogram analysis methods [6] .

To further improve mammogram characterization, we investigate

in this paper gray level mammogram features. Bearing in mind

the superiority of multiresolution texture features over gray level

texture features, we are not looking for a gray level mammogram

description that outperforms multiresolution texture features, but

rather for the combination of the two approaches. Our findings

show that the proposed feature set yields better results than sev-

eral curvelet-based methods. Indeed, our highest accuracy result

(Random Forest-81%) is slightly better (but not statistically signifi-

cant) than biggest curvelet coefficients (BCC) ( = 80.65% std 0.65%),

Statistical Curvelet Coefficients (SCC) ( = 80.01% std 0.58%) and co-
ccurence matrix of curvelet coefficients ( = 80.69% std 0.52%). Our

ethod is only outperformed by Curvelet Level Moments (CLM)

86.46% std 0.91%), and the difference is statistically significant. 

.2. Discussion 

In this paper, we have investigated several gray level feature

xtraction methods for false positive reduction of mammogram

asses and tested three classification methods. The poor results

btained with each set alone is not only due to the limitation

f each feature set, but also to the challenging problem in hand.

ombination of the proposed feature sets statistically improves the

esults, which shows the importance of combining several feature

ets. Furthermore, the feature selection step reduce the size of the

eature set and also statistically improves the accuracy. This shows

he importance of feature selection step. For all the compared sets,

he differences between the results gathered from the three clas-

ifiers are not statistically significant. This shows that, in our case,

he feature extraction step affects more the results than the classi-

cation step. The superiority of curvelet moments show that mul-

iresolution feature may be better for mass characterization than

ray level features. Motivated by the encouraging results obtained

y the proposed gray level texture features as well as curvelet

oments, our future work will include combination of such fea-

ures to further improve the characterization of mammogram ROIs

able 8 . 

Motivated by the great success of deep learning methods, sev-

ral researchers have investigated it for mammogram analysis

7,20] . For instance, Kooi et al. have shown that a deep learning

odel in the form of a Convolutional Neural Network(CNN) trained

n a large dataset of mammographic lesions outperforms a state-

f-the art system in Computer Aided Detection (CAD) [20] . A com-

arison of the CNN to three experienced readers have shown that

he network is not far from the radiologists performance, but still

ubstantially below the mean of the readers. As pointed in [20] ,

ven though a large performance increase is still possible, How-

ver, further improving the network requires more training data.

n this context, a possible future direction is to employ our fea-

ure set with the CNN, which may be more effective than adding

housands of extra samples to the training. 

. Conclusion 

In this paper, we have investigated several gray level tex-

ure analysis methods for the characterization of mammogram

OIs. The proposed methods include gray level co-occurrence ma-

rix, fractal analysis, Hilbert’s image representation, Kolmogorov–

mirnov distance and maximum sub-region descriptors. By extract-

ng features directly from the entire ROIs, we not only escape the

hallenging problem of mammographic mass segmentation, but we

lso take into account the texture surrounding the lesion, which is

seful for breast cancer diagnosis [18] . A feature selection step was
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lso included to choose the optimal feature set. Several classifiers

Random Forest, Support Vector Machine and Decision Tree) were

onsidered to distinguish normal tissues from masses. Empirical

valuation in a large database composed of challenging suspicious

egions extracted from the DDSM database prove the efficiency

f the suggested method for false-positive reduction in mammo-

raphic mass detection. Our future work will be devoted to the

ombination of our feature set with multi-resolution curvelet mo-

ents, which provide better accuracy than our proposed gray level

eature set. Furthermore, we plan to consider deep learning for

omparison in our future work. Another future direction is to test

he proposed framework in the case of current digital full breast

ammographic images. 
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