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Abstract. Automatic recognition of mammographic images in breast cancer is a difficult problem due to confusing appearance of some 

normal tissues which look like masses. The existing computer-aided systems suffer from non-satisfactory accuracy of cancer detection. This 
paper copes with this problem and proposes two alternative techniques of mammogram recognition: the application of many different methods 
for definition of the numerical descriptors of the image in combination with an efficient SVM classifier (so called classical approach) and 

application of deep learning in the form of the convolutional neural networks, enhanced with the additional transformations of the input 

mammographic images.  

  The key point in the first approach is defining the proper numerical descriptors of the image and selecting the set which is the most 

class discriminative. To achieve better performance of the classifier, many descriptors of images were defined by applying different 

characterization of the images: Hilbert curve representation, Kolmogorov-Smirnov statistics, maximum subregion principle, percolation 
theory, fractal texture descriptors as well as application of wavelet and wavelet packets. Thanks to them better description of the basic 

properties of the image has been obtained. In the case of deep learning the features are automatically extracted in convolutional neural network 

learning. To get better quality of results the additional representations of mammograms in the form of nonnegative matrix factorization and 
self-similarity principle have been proposed. The applied methods were evaluated on a large database composed of 10168 regions of interest of 

mammographic images taken from the DDSM database. Experimental results prove the advantage of the deep learning over traditional 

approach to image recognition. Our best average accuracy in recognizing abnormal cases (malignant plus benign versus healthy) was 85.83%, 
sensitivity 82.82%, specificity 86.59% and AUC=0.919. These results belong to the best for this big data base.  

Key words: convolutional neural networks, breast cancer diagnosis, mammogram recognition, diagnostic features.  

1. Introduction 

Breast cancer belongs to the most dangerous cancer 

affecting women. More than 18% of all cancer deaths, 

including both males and females, are from breast 

cancer. Over 1.67 million new cases worldwide in 2012 

have been registered [1]. The early detection of cancer is 

crucial for treatment, since it means better perspective of 

recovery. 

The screening mammography programs are organized 

to cope with the problem and to reduce the mortality rate 

[2,3]. However, the mammography interpretation is a 

difficult task due to the subtle signs of breast 

abnormalities, which could be observed in an early stage. 

According to statistics, 10-15% of cancer cases are 

undetected.  

 Due to the huge amount of screening mammograms, 

which should be analyzed by two independent experts and 

due to the limited number of expert radiologists, it is a 

bottle neck in all screening programs. Therefore, the 

Computer Aided Detection (CAD) systems are urgently 

needed. Such system can replace the second reader and 

alert the expert radiologist to the suspicious regions. 

However, the accuracy of the actually developed systems is 

still not satisfactory. Different solutions have been 

reported to the computer aided mammogram recognition. 

They differ by image preprocessing stages, which lead to 

different diagnostic features and also by the solution of 

classification systems used in the recognition of pattern 

formed by these features.  

The paper [4] reviews different methods of feature 

definition and application of the classification tools. The 

diagnostic features are based on characterization of the 

texture, edge orientation, statistical analysis of a map of 

pixels in the mammographic image, etc. Different 

mathematical tools are used in definition of the features. 

They include wavelet decomposition, mathematical 

morphology, thresholding methods, template matching, 

neural networks and many others. The paper [4] presents 

the comparison of actual results of different approaches 

to recognition of normal from abnormal mammograms, 

obtained for limited number of mammograms (from 128 

to 280). However, the quality factors defined in the form 

of true positive rate TPR= 75.7%, false positive rate 

FPR=73.5% and AUC (area under ROC curve) changing 

for different solutions from 0.76 to 0.89 were not 

satisfactory. The paper [5] has presented application of 

extreme learning machine to the tumor detection in 

double views mammography. 

Most research presented in literature used only small 

database of mammographic images. The paper [6] has 

presented the application of principal and independent 

component analyses for generation of diagnostic features 

and radial basis function network as a classifier. The 

accuracy rate of 88.23% in detection of all kinds of 

abnormalities in the analyzed 119 regions of suspicion 

for mammogram images in Mini Mammographic 
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Database of MIAS has been reported. In [7] the features 

based on estimation of the probability density function of 

the gray level differences in the image were defined. 

After genetic algorithm and forward sequential selection 

these features have been used as the input signals to the 

multilayer perceptron used in the classification mode. 

The classification accuracy of 89%, with 88.6% 

sensitivity and 83.3% specificity have been reported for 

410 mammograms from Digital Database for Screening 

Mammography (DDSM). The 600 cases taken from 

DDSM were analyzed in [8] using three different 

methods of feature problem solution: genetic algorithm, 

greedy selection and random mutation hill climbing. 

Different commercial CAD products for mammography 

analysis, including AccuDetect Parascript® [9], R2 

ImageChecker and iCAD Second Look [10] have been 

checked in recognizing the abnormal cases. It was 

shown, that all of them suffer from the limited accuracy. 

The best results of AUC was 0.789.  

In [11] the recognition results of abnormality cases in 

all mammograms of DDSM base by using the curvelet 

moments was presented. Only the accuracy rate was 

reported It changed from 81.26% to 86.46% depending 

on the applied feature set. However, no sensitivity, 

specificity and AUC information have been presented. In  

[12] the application of deep learning to the recognition of 

mammograms was proposed. 

The aim of this work is to develop and compare two 

new approaches to mammographic image recognition, 

able to recognize the abnormal cases (benign 

+malignant) from normal, with an increased accuracy. 

Both will be used to analyze the regions of interest (ROI) 

of the mammograms. The first approach consists in 

typical steps used in classical pattern recognition: 

generation of numerous numerical descriptors of the 

image, selection of the most discriminative ones, which 

will serve as the diagnostic features for classifier and 

final classification step by using the support vector 

machine (SVM). To get the most objective and 

independent description of the image we have proposed 

different feature extraction methods. They include 

representation of the image by Hilbert curve and 

definition of special descriptors based on the self-

similarity of vectors, Kolmogorov-Smirnov statistics, 

maximum subregion principle, percolation theory, the 

gray level co-occurrence matrix (GLCM) analysis, 

fractal texture description as well as application of 

wavelet and wavelet packets in creating numerical 

descriptors. To the best of our knowledge most of them 

are applied for the first time in mammographic image 

analysis. In the next step a sequential feature selection 

method is used to choose the most class-discriminative 

subset of features. In the classification step the SVM has 

been applied.  

In the second approach we will use the deep learning 

strategy based on the convolutional neural network 

(CNN) as the work horse. CNN plays the role of the 

unsupervised feature selection and a final classification 

at the same time. However, direct application of the set 

of mammograms available in DDSM base to the CNN is 

not fully successful due to the limited number of the 

sample images. Therefore, we propose to expand the 

input data by the additional images created by applying 

the non-negative matrix factorization (NMF) and 

statistical self-similarity. They fulfill the significant role 

in the classification system and allow increasing the 

accuracy of the image recognition. 

The numerical experiments have been performed on 

a large DDSM data base containing more than 10000 

mammograms. The results of these investigations have 

confirmed good accuracy of class recognition. The 

comparison of the classical and deep learning approaches 

has shown the advantage of deep learning strategy. The 

main contribution of this work is as follows: 

 Proposition and application of novel methods for 

extracting the numerical descriptors of the 

mammographic images in classical neural approach to 

image recognition. Diversity of descriptions allows 

characterizing details of the images from many 

different points of view.  

 Successful application of deep learning strategy in the 

form of convolutional neural network to the analysis 

of mammographic image. The important element in 

this representation is an application of the non-

negative matrix factorization and statistical self-

similarity, which are able to enhance the differences 

between classes of mammograms and in this way 

increase the accuracy of class recognition. 

 An experimental evaluation of the proposed solution 

on the DDSM set of mammograms and proving its 

better performance in comparison to other results 

presented actually in different papers. Our best 

average accuracy in recognizing abnormal cases from 

normal was 85.83%, sensitivity 82.82%, specificity 

86.59% and AUC=0.919. These results are one of the 

best for this set. 

The rest of the paper is organized as follows. Section 2 

describes shortly the database of the used mammograms. 

Section 3 presents the classical approach to image 

recognition and the results of the numerical experiments. 

Section 4 is devoted to the deep learning approach to 

mammogram recognition. Section 5 compares the 

obtained results using both methods and the other 

reported in actual publications. The concluding section 

summarizes the presented considerations. 

2. Database of mammograms applied in 

investigations 

The numerical investigations have been carried out 

using the largest publically available database of 

mammographic images “Digital Database for Screening 

Mammography”[13]. It is composed of 2604 cases, each 

containing 4 mammograms (left and right breast from 
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above representing Cranial-Caudal view and oblique 

representing Medio-Lateral-Oblique view). The dataset 

contains the important information of each mammogram, 

including its diagnostic results (normal, benign or 

malignant) and the location of existing lesions forming 

ROI. For the abnormal cases (benign and malignant), a 

manual cropping was done based on the information 

provided in the ground truth. The ROI corresponding to 

masses represents rectangular area with the lesion in the 

center. In normal cases ROI was extracted manually by 

the medical expert from normal tissues. The size of ROI 

images was the same and equal 128×128 pixels, 

irrespective of its type. The number of ROI images, that 

has been used in experiments was 10168. The DDSM 

data base contained the following number of class 

representations: 

a. Normal tissue: 8254, 

b. Benign lesion: 862, 

c. Malignant lesion: 1052. 

It means that the abnormal tissue set representing the 

benign and malignant cases contains only 1914 ROI 

images, much less than normal ones (8254 samples). It 

presents some additional problems related to the 

unbalanced set of data.  

 

    
a)  

    
b) 

    
c) 

Fig. 1 The ROI examples of mammograms representing normal (a), 

benign (b) and malignant (c) cases. 

 

This problem was solved by splitting the set of 

normal cases into 4 subsets, each confronted in 

classification with the same set of abnormal cases and 

applying the majority voting rule.  

Fig. 1 presents the examples of mammograms of 

normal (Fig. 1a) and abnormal cases: benign (Fig, 1b) 

and malignant (Fig. 1c). We can observe the significant 

differences among the images representing the same 

class of data and close similarity of images representing 

different classes. It results in significant problems on the 

stage of class recognition.  
 

3. Classical neural approach to mammogram 

recognition.  

Three independent steps are usually applied in the 

classical neural approach to image recognition: 

extraction of the numerical descriptors of the images, 

selection of the best set of the class discriminative 

diagnostic features and the classification step responsible 

for the final recognition of classes. 

 

3.1 Definition of numerical descriptors of the 

mammographic images 

The main problem in efficient numerical 

characterization of the mammographic images is their 

diversity inside the same class of images and close 

similarity between the normal and abnormal tissues. To 

cope with this problem we propose application of 

different mechanisms of feature definition, 

characterizing the image from different points of view. 

The applied methods will refer to characteristics of 

chaotic systems using fractal measures, texture 

description using the co-occurrence Haralick’s matrix 

and Kolmogorov-Smirnov statistics, self-similarity of 

images, percolation theory, different types of statistical 

description as well as description based on wavelet 

representation. In generating the image numerical 

descriptors the following methods are used 

 description based on Hilbert’s curve representation of 

the image, 

 statistical description based on coaxial rigs image 

representation and their characterization by applying 

Kolmogorov-Smirnov distance, 

 maximum subregion principle, 

 description based on percolation theory, 

 texture description based on the gray-level co-

occurrence matrix, 

 application of self-similarity principle of the image in 

connection with box-counting dimension, 

 segmentation-based fractal texture analysis, 

 application of wavelet and wavelet packet 

decomposition. 

 

3.1.1 Kolmogorov-Smirnov descriptors 

Kolmogorov-Smirnov (KS) descriptors belong to the 

statistical parameters. They are defined on the basis of 

pixel intensity in the coaxial rings of the increasing 

diameters [14]. The succeeding regions of the image are 

split into few concentric rings around the central point 

The particular regions contain approximately equal 

number of pixels in each ring. The central point is 

traveling around the whole image. In each position of it 

the KS statistics describing the difference between the 
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pixel populations in the rings placed in equal distances 

from each other are estimated. The KS statistics checks if 

the pixels belonging to two rings are belong to the same 

population. KS distance is defined on the basis of their 

cumulative distributions F(xi) and F(xj) 

))-F(xF(xd jiKS   max     (1) 

over all x. This distance represents the measure of 

difference between the pixel statistics in both rings. 

Four coaxial rings have been constructed for each 

mammographic image. Every coaxial ring contains 

approximately the same number of pixels. The set of KS 

distances corresponding to the combinations of these four 

levels have been estimated. Level 1 represents KS 

distance of two succeeding rings, i.e., rings 1 and 2, 2 and 

3, 3 and 4, etc. Level 2 describes the statistics of rings  

distant by 2, for example 1 and 3, 2 and 4. The cumulative 

mean and median values of KS distance between the 

intensity of pixels belonging to two different rings, 

generated over the whole image, have been estimated. The 

functions relating the mean and median values of KS 

distance dKS versus the level l are linearly approximated in 

the forms 

  ldmean meanmeanKS 10_   (2) 

  ldmed medmedKS 10_   (3) 

where 0  and 
1  are the regression coefficients 

corresponding to equations (2) and (3). The following KS 

parameters were taken for description of the image:  

 dKS12 (the mean and median values of KS distances 

between rings 1 and 2),  

 dKS13 (the mean and median values of KS distances 

between rings 1 and 3) 

 dKS14 (the mean and median values of KS distances 

between rings 1 and 4) 

 the ratio dKS13/dKS12 in mean and median 

representation 

 the ratio dKS14/dKS12 in mean and median 

representation 

 the coefficient 0mean and 0med of the linear 

approximations (2) and (3) 

 the slope coefficient 1man and 1med of the linear 

approximation (2) and (3) 

In this way we obtained 14 descriptors following from the 

KS statistics. 

 

3.1.2 Maximum subregion descriptors 

The main idea in this method is to observe the process of 

disaggregating the image into smaller consistent subgroups 

by using thresholding at different values of bias [14]. The 

process of splitting is aimed to find the level of 

thresholding which provides the largest number of 

consistent subgroups. Many thresholding processes are 

performed on the image to achieve the goal.  

In the searching procedure we apply the idea of 

quantile representation of pixel’s intensity, i.e., 0.01, 

0.02,.., 0.99. We search for the quantile q and its 

corresponding intensity threshold value thq, which splits 

the image into the largest number of compact groups of 

pixels (the group is understood as the compact area 

isolated completely from the other pixels). The value of 

quantile q and its normalized threshold nthq will form the 

diagnostic features.  

The normalized threshold is defined as 

 
199

1

255

ff
fthnth qq


 , where f1 is the lowest intensity 

level of the pixels corresponding to the first quantile and 

f99 the intensity level corresponding to 99th quantile. The 

third descriptor is defined in the form of the relative area 

of the largest compact subgroup of pixels in the image 

after thresholding. For two types of subimages after 

thresholding (the subimage of pixel intensity higher or 

lower than assumed threshold value) the number of these 

features is duplicated (six descriptors in total).  

 

3.1.3 Percolation descriptors 

The percolation descriptors are focused on differences in 

the complexity of the borders (smoothness, raggedness, 

etc.) of the structure formed by the pixels in the analyzed 

image. The image is first binarized into many subimages 

using different threshold values and then the “fire” is set 

in each segment [14,15]. In each iteration the pixels 

adjacent to the region under fire enlarge the fired area. 

The number of iterations needed to undear the whole 

image at different binarization thresholds are determined. 

This process is performed on the image resized to the 

dimension 1024×1024. In the first phase the image is 

covered by the horizontal and vertical lines located every 

100 pixels. The fire, initiated in each node created by the 

crossing points of the horizontal and vertical lines, is 

spreading simultaneously in all directions (horizontal, 

vertical and diagonal). The process is repeated 

simultaneously on all subimages, which are obtained by 

the binarization made at different values of threshold. The 

more jagged image the longer is the fire duration. The 

threshold values are changed step by step in the intensity 

range [0 255] of the pixels, according to the decile steps 

from q=1 up to q=9. The fire duration (measured by the 

number of iterations) is registered for each value of 

threshold. The percolation descriptor of the image is 

assumed in the form of the weighted average measure qw 

of quantiles, defined as follows 

 








9

1

9

1

i
i

i
ii

w

d

dq

q     (4) 

where qi is a quantile changing from 0.1 to 0.9 with step 

of 0.1 and di is the number of iterations of the fire at the 

threshold value corresponding to the ith decile. The 

segmentation is repeated many times on the subimages 

formed in thresholding process assuming the pixel 

intensity higher or lower than the assumed threshold 

value. This results in two numerical descriptors qw 

corresponding to these two percolation processes.  
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3.1.4 GLCM texture descriptors 

GLCM texture description is well known approach to 

characterization of the images. It is based on the co-

occurrence matrix [15], which reflects the statistical 

relationships between the intensity of the neighboring 

pixels in the image. In this particular application we have 

limited texture characterization to four statistical 

descriptors of the co-occurrence matrix of the image. 

They include: local contrast of the image, which 

characterizes the intensity difference between a pixel and 

its neighbors over the whole image, correlation existing 

between different pixel pairs, energy representing the 

occurrence of repeated pairs in the image and 

homogeneity coefficient, the latter characterizing the 

distribution of elements in GLCM matrix.  

 

3.1.5 Statistical descriptors of the image 

The statistical descriptors of the image have been 

created directly on the basis of the pixel intensity level. 

They include the mean, median, standard deviation (std), 

kurtosis, minimum, maximum, cumulants of the second, 

third and fourth orders, the ratio of the difference of 0.75 

and 0.25 quantiles related to the maximum of median (or 

the value 0.001 if the maximum is less than 0.001) and the 

ratio of std to maximum (or the value 0.001 if the 

maximum is less than 0.001). In this wat the total number 

of these descriptors is 11. 

 

3.1.6 Self-similarity descriptors 

This family of descriptors is the generalization of the box 

counting dimension applied to the grey scale image. The 

original ROI image resized to the dimension 1024×1024 

is first covered by the grid of horizontal and vertical lines 

separating it into s×s small regions. In the next step the 

similarity of each region to the whole image is estimated. 

This is done by using statistics of Kolmogorov-Smirnov 

distance dKS [17]. The higher the value of this distance the 

lower is the similarity index of the analyzed subregion to 

the whole image. After performing such calculations for 

all regions of the original image the new image of the size 

n×n is created. The ijth element of this image represents 

the similarity of this particular region to the whole image 

and is described by yij=1-dKS. All similarity values are in 

the range of [0, 1].  

 Three different grids have been applied: 64×64, 

128×128 and 256×256. Each of them generates the 

corresponding self-similarity images described by the 

matrices of the appropriate size. The following step is 

similar to the classical box-counting dimension of fractals 

[18]. The sum of elements corresponding to the 

appropriate matrices is calculated. At three applied sizes 

of the grid we get three pairs of points, representing the 

scale s (here s=64, 128, 256) and the sum N(s) of the 

values of elements in the corresponding matrix. The linear 

regression in logarithmic scale is estimated for these 

results 

 bsasN )(log))((log 22    (5) 

The slope a and intercept point b represent two descriptors 

of the image. The next 6 descriptors represent the mean 

value and standard deviation of the self-similarity 

matrices corresponding to the sizes: 64×64, 128×128 and 

256×256. The total number of these descriptors is 8. 

 

3.1.7 Segmentation based fractal texture 

descriptors 

This method generates descriptors on the basis of 

multi-thresholding level Otsu algorithm and is called 

shortly SFTD [19]. The image is binarized using 

different pairs of upper and lower threshold values, 

which are selected by using the so called two threshold 

binary decomposition technique. Then, the recursive 

algorithm is applied to each image region until the 

desired number of threshold values n is obtained, where 

n is the user defined parameter. As a result the image is 

decomposed into a set of binary images. The more 

jagged edges of the segmented regions, the higher is 

their fractal dimension. Therefore, the box counting 

dimension of boundaries is a good candidate for being 

the numerical descriptor characterizing the image. Two 

additional descriptors are defined in the form of the size 

and mean gray level of the subimages. For n threshold 

values the number of descriptors is equal 3n. In this 

application we have applied 12 threshold values selected 

in this way. As a result 36 numerical descriptors of the 

image have been defined. 

 

3.1.8 Hilbert’s descriptors 

Hilbert space-filling, called Hilbert curve, is a 

continuous fractal space-filling curve providing a 

mapping between 1D and 2D space that preserves fairly 

well local regions of the image [20,21]. The 1-D Hilbert 

curve of the image represents pixel intensity in the points 

specified by the nodes as shown in Fig. 2, where we have 

limited representation for the grid of the size 8×8. 

 
a)  

 
b) 

Fig. 2 The example of Hilbert curve (a) and the order of 64 pixels 

in 1-D vector representation of the image. 
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In this work the Hilbert representation of the 

mammogram containing 1024 elements has been used. 

As a result of such representation each analyzed image 

has been substituted by its vector form of the length 

1024. 

The family of descriptors is defined using the KS 

statistics estimated for two Hilbert sub-vectors traveling 

along the Hilbert curve with a step equal one. Both 

vectors have the length of 256 elements and occupy 

neighboring position in space. The KS distance dKS for 

each position of these two vectors is estimated. On the 

basis of these distances and the corresponding 

significance levels p, the additional statistical descriptors 

are defined. They include the mean, median, std values 

of dKS and p and also the corresponding ratio of std-to-

mean calculated for both parameters. The set is 

supplemented by the values of 0.25 and 0.75 quantiles, 

their differences and the ratio of their difference related 

to maximum of median at the assumed significance level 

of 0.001 estimated for both parameters. In this way 16 

Hilbert descriptors have been defined. 

 

3.1.9 Multiscale Wavelet Transform descriptors 

The Hilbert curve of the image is transformed into 

wavelet decomposition [22] and represented by the 

detailed coefficients on different levels and the residual 

signal on the last level of decomposition. Each detailed 

and residual signal has been characterized by 4 

parameters: energy, variance, standard deviation, and 

waveform length. In this particular application db4 

wavelet and 10 levels of decomposition have been used. 

The wavelet function type and number of decomposition 

levels have been selected after series of introductory 

experiments, in which Fisher discriminant measure was 

used to assess the quality of resulting descriptors. The 

procedure results in 11 waveforms representing 10 

detailed coefficients and one residual signal. Since each 

waveform is characterized by 4 parameters we obtained 

44 descriptors.  

3.1.10 Wavelet packet descriptors 

The wavelet packet decomposition was used to form 

the next set of descriptors [23]. The wavelet packet 

decomposition was applied also to the Hilbert vector 

form of the image. The db4 wavelet family and two levels 

of decomposition were used in the numerical experiments. 

As a result 16 vectors representing the details on four 

levels and the residual vectors for the last fourth level 

have been obtained. Each vector is characterized by the 

energy of its elements, i.e.  
i

k

ik xE
2)(  for k=1, 2,…, 

16, where 
)(k

ix  represents the value of element in i-th 

position in kth detail or residual vector. These values 

create the set of 16 wavelet descriptors. 

 

3.2. Feature selection 

The total number of descriptors defined in the previous sections is 

equal 157. However, not all of them represent the equally 

good features in class discrimination. Therefore, the 

selection process is needed, which should select the set of 

the best diagnostic features representing the highest class 

recognition ability. Sequential forward and backward 

selection method [17, 24] has been applied. This approach 

was due to high effectiveness and relatively quick 

performance. As a result of its application the specific set 

of optimal features is generated. This is in contrast to 

other methods based on other informative or correlation 

measures. 

The individual descriptors are added and removed 

from the actual feature set in the selection process. After 

including or removing the feature the newly created set of 

features is checked for the class prediction accuracy. If the 

added or removed descriptor has increased the accuracy of 

the resulting set, the operation is accepted, otherwise it 

will be discarded [17]. In the process of checking the 

class discrimination ability of the actual feature set the 

support vector machine of radial kernel was used as the 

classifier. For every candidate feature subset the sequential 

feature selection was applied using 10-fold cross-

validation, by repeatedly calling function with different 

training subsets of learning data and the changing 

validation subset of data. As the result of such selection 

process we get the logical vector indicating which features 

are finally chosen by the selection procedure.  

Only 39 diagnostic features out of 122 descriptors 

generated in the initial image description have been left 

after this selection process. The composition of the 

selected feature contained the representatives of all types 

of descriptions. Among the selected features there were 9 

representatives of multiscale wavelet transformation, 8  

Hilbert descriptors, 5 wavelet packet descriptors, 4 SFTA 

descriptors, 3 percolation descriptors, 3 statistical 

descriptors, 3 fractal descriptors, 2 Haralick texture 

descriptors, one maximum subregion and one KS 

descriptor. 

 

3.3. Results of numerical experiments 

The dataset was split into 10 subsets, each containing 

the same proportion of both classes, related to their 

populations in the database. Nine parts of samples are 

used in the feature selection and learning the SVM 

classifier and the last one used for testing the learned 

system. The same experiments have been repeated ten 

times, exchanging the testing and learning subsets. To 

balance the number of classes in each experiment the 

normal class was split into four parts, each associated with 

the same abnormal cases and the results were averaged. 

The training and testing sets have been chosen randomly 

from the data base. 

Different classifiers, including SVM, multilayer 

perceptron, decision tree and random forest have been 

tried in the introductory experiments. However, the best 

results have been obtained for SVM of the radial Gaussian 
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kernel  2
exp),( iiK xxxx    of γ=0.1 at application 

of the regularization constant C=1000, and only these 

results will be presented here. These parameters have been 

selected after introductory experiments performed on a 

small set of data using the set of predefined values for C 

and γ. The parameters leading to the best results of 

recognition have been selected. The classification 

experiments have been done for the whole set of features 

and for the reduced set of features created by the stepwise 

fit.  

Table 1 summarizes the statistical classification results 

for the testing data achieved by the SVM for all descriptors 

and after their selection. The first number represents the 

mean value and the term after ± sign the standard 

deviation, both obtained in the repeated 10-fold cross 

validation experiments. We have applied this procedure, 

since it is the approach regarded as the most objective in 

estimation of the quality of the applied model. This id due 

to the fact, that all data take simultaneously part in 

learning and testing stages.  

Table 1 

The results of mammogram recognition using classical neural 

approach 

 All features Selected features 

Accuracy 78.73%± 1.96 81.01%± 2.36 

Sensitivity 79.73%± 1.53 82.48%± 1.97 

Specificity 77.73%± 1.79 79.63%± 2.02 

 

4. Deep learning in application to 

mammogram recognition 

Deep learning is the novel stream of research 

integrating the process of self-organizing feature selection 

and final classification of the images [25,26]. In this 

research we have applied the convolutional neural 

network (CNN) as a work horse. The important problem 

in this approach is the limited number of images, 

representing the abnormal cases. To increase the 

information of the class differences among the analyzed 

mammograms the additional preprocessing of the images 

has been proposed. It was done by applying nonnegative 

matrix factorization (NMF) and the statistical self-

similarity of the images. Thanks to this additional view on 

the mammograms the diagnostic information contained in 

the original data base has been enhanced. 

 

4.1 Image representation using NMF  

The non-negative matrix factorization is a decomposition 

technique representing the given matrix P by two matrices 

W and H, both of the non-negative elements [27, 28], i.e., 

P=WH. The columns of W represent the basis vectors and 

the columns of H the encodings associated with them. 

Assume the matrix P is composed of the column vectors 

of the length N and M the number of such vectors. The 

matrices W and H are of the size N×r and r×M, 

respectively, where the value of r is the factorization rank 

adjusted by the user (usually (N+M)r<NM).  

The NMF factorization will be performed here to 

enrich the representation of the mammographic images 

and to enhance the difference between mammograms 

representing normal and abnormal cases. All analyzed 

mammographic images are represented in the vector 

Hilbert form. They are grouped in the matrix P.  

The NMF operation will be performed on the set of 

mammograms representing only normal cases, since these 

images are more alike to each other. Only half of vectors 

belonging to the normal class has been used in this step of 

processing. According to NMF procedure the matrix P is 

decomposed into W and H of non-negative elements. The 

factorization means, that ith vector pi (the ith column of 

P) can be expressed as the weighted sum of basis vectors 

and it might be presented in Matlab notation [17] as 

following 





r

j
i ijj

1

),()(:, HWp    (6) 

The whole set of original mammographic images 

representing normal and abnormal cases is converted to 

the NMF factors and then reconstructed using only limited 

number r of the basis vectors. In these investigations we 

have applied only 10 basis vectors in reconstruction 

(r=10). Since the NMF decomposition was performed 

only on the normal cases, such reconstruction will 

represent better the images of this class. The abnormal 

cases reconstructed by the basis vectors obtained in NMF 

decomposition of only normal cases, will show larger 

discrepancy to the original ones. This way the differences 

between normal and abnormal cases have been increased. 

Thanks to it the recognition of classes will be easier.  

 

4.2 Statistical self-similarity for the image 

representation  

The next type of transformation applied to the original  

images is created using the so-called statistical self-

similarity. These images are defined on the basis of 

statistics of the pixel intensity distribution in regions, 

which are small in comparison to the whole image. In the 

first stage of processing the image is resized to the 

dimension 1024×1024 pixels and then split into small 5×5 

compact overlapping regions. This way the original 

mammographic image is represented by 256×256 small 

sub-images. In the next step the similarity of these sub-

images to the whole image is measured using the 

Kolmogorov-Smirnov dKS distance [17]. As a result the 

small subregions are represented by the single values 

equal to 1-dKS, with the range between 0 and 1. The lower 

the value of KS, the more similar the sub-image to the 

whole image is. In final stage, the set of 256×256 KS 

images is scaled back to the original dimension of 

128×128. Such transformation of images increases the 

differences between representatives of various classes.  
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4.3 Convolutional neural network in mammogram 

recognition 

CNN model is a very complex nonlinear structure, 

exploiting the high-level abstraction by using multiple 

hidden layers [25, 26]. These layers are able to extract and 

identify different levels of details of the images. In the 

higher layers the more abstract concepts are learned on the 

basis of the previous patterns extracted by the lower 

layers. The layer is composed of group of neurons, 

performing the role of locally connected filters. Each 

neuron receives input signals from a set of compact units 

located in a small neighborhood of the previous layer. The 

neurons extract the elementary features, such as blobs, 

edges, crossings of edges, end points, corners, etc. The 

local reception field of each neuron is moved along all 

pixels of the image with the step (stride) defined by the 

user. 

The features combined by the subsequent layers create 

finally fully connected layer, representing the input 

signals to the output classification layer. The output 

signals of this layer are generated by the softmax units 

and form the final class recognition. Softmax layer 

calculates the output value based on the multinomial 

logistic regression [26], representing the probability of 

membership of the actual input vector to the appropriate 

class. The number of units in Softmax layer is equal to the 

number of classes. The class of the highest probability is 

taken as the final winner. The detailed description of CNN 

can be found in [25]. 

In this paper the CNN containing three convolution 

layers and two fully connected layers has been found as 

the most successful [12]. The details of the following 

layers are as following. 

 The first convolution layer structure: 32 filters of 

dimension 5×5 with zero padding 2×2 and stride 1×1; 

Max pooling of the size=3×3, zero padding=0×0, 

stride=2×2; Rectified Linear Unit layer. 

 The second convolution layer structure: 32 filters of 

dimension 5×5, zero padding 2×2, stride 1×1; Average 

pooling of the pooling size=3×3 with zero 

padding=0×0, stride=2×2; Rectified Linear Unit layer. 

 The third convolution layer structure: 64 filters of 

dimension 5×5 with zero padding 2×2 and stride 1×1; 

Average pooling of size=3×3 with zero padding=0×0, 

stride=2×2; Rectified Linear Unit layer. 

 The first Fully Connected Layer: 64 neurons with 

Rectified Linear Units. 

 The second Fully Connected Layer contains two 

neurons (dependent on number of recognized classes) 

with Softmax. It performs the role of final 

classification. 

The general organization of the CNN system for 

recognition of classes of mammograms is presented in 

Fig. 3 [12].  

 
Fig. 3 The deep learning system used in mammogram recognition. 

 

The CNN is supplied by three images representing the 

analyzed mammograms: the original mammographic 

image, the image reconstructed on the basis of NMF and 

the transformed image reconstructed on the basis of the 

self-similarity principle. Thanks to these additional 

transformations of the mammograms more information 

regarding the structure of the analyzed images is delivered 

to CNN. At the same time the number of input data is also 

triplicated. The information enhanced in this way 

significantly increases the probability of correct 

classification.  

 

4.4. Results of numerical experiments 

The numerical experiments of mammogram recognition 

using CNN have been performed on the same samples of 

mammograms in DDSM database as used in the previous 

section. The aim was to recognize the normal cases (class 

1) from abnormal (benign and malignant jointed together) 

representing class 2. The experiments have been 

performed using 10-fold cross validation organized in the 

same fashion as in the classical approach. Only half of the 

normal cases in the learning sets have been used in NMF 

decomposition to get the basis vectors of W used in the 

reconstruction of all mammographic images.  

The procedure of the final class recognition was 

performed in the following way. The continuous output of 

the classifier in the learning mode (before binarization) 

was subject to the dynamic thresholding at different 

values of threshold. The threshold generating the highest 

quality measure for the learning data was fixed and 

applied in testing the remaining validation data (10% of 

data in each run of cross validation procedure). The 

quality measure, which was taken into account in this step 

included the value of AUC of the receiver operating 

characteristic. The maximized AUC measure is a good 

compromise between the sensitivity (ability to discover 

the minority class) and specificity (ability to discover the 

majority class) of the recognition system. 

Table 2 presents the detailed results of recognition of 

mammograms obtained in the testing mode of the 10-fold 

cross validation [12]. The results of recognition of normal 

cases from abnormal are presented in the form of 

sensitivity, specificity and average accuracy. The 

sensitivity of recognizing the abnormal cases from normal 

was equal 82.82% and specificity 86.59%. The obtained 

accuracy is somewhere in the middle of them (85.83%. 

The obtained area under ROC curve AUC=0.919. These 
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results belong to the best already reported for this large 

DDSM database.  

Table2 

The results of numerical experiments of mammogram recognition 

using CNN 

Sensitivity Specificity Accuracy 

82.82%± 0.95 86.59%± 1.12 85.83%± 1.08 

 

Comparison with the classical results presented in Table 1 

shows evident advantage of the deep learning approach. 

All quality measures have been increased in a significant 

way. To assess the importance of inclusion the NMF and 

self-similarity images in recognition process the 

additional experiments have been performed using only 

the original images of mammograms. The obtained AUC 

value for recognition of abnormal from normal cases was 

reduced to AUC=0.88. According to ranskum test at 5% 

significance level this difference is statistically significant.  

 

5. Comparative study 

The problem of mammogram recognition was studied in 

many papers. However, most of them used either different 

data base or very limited images selected from DDSM. 

Different quality measures have been also applied in 

presentation of the results. Therefore it is difficult to 

present the comparison to all these works in an objective 

way. We will limit here the comparison to the papers, 

which have used the same DDSM data base.  

The paper [7] has considered very small set of 410 

mammograms of DDSM database and the overall 

accuracy achieved by authors was 87% with 88.6% 

sensitivity and 78.6% specificity. Due to small number of 

samples these results are not fully credible. The quality 

measure of solution in the form of AUC value was 

presented in the papers [8] and [28]. The AUC value of 

0.789 for 600 cases was reported in [8] and 0.871 for 1000 

screening mammograms in [28]. 

In  [30] deep CNN approach to recognition of normal 

from abnormal mammograms on very large data base 

from Netherlands, containing over 44000 mammographic 

views has been presented. The results are represented by 

ROC curve. The best AUC with the augmentation 

(context, location, patient information) and manual feature 

support was AUC=0.941. The best results without 

augmentation was AUC=0.929. 

In  [31] the results for DDSM declaring 85% of 

accuracy and AUC=0.91 have been presented. They were 

obtained using Google Le Net system and ensemble of 

100 parallel networks.  

The results for DDSM base presented in [32] have 

covered 1057 malignant and 1397 benign cases. They 

were concentrated on ROC and declared the best value of 

AUC=0.82.  

In [33] the DDSM for more than 6000 mammographic 

images and ZMDS (1739 mammograms) have been 

considered. The best results for images declared 

AUC=0.922, sensitivity 0.901 and specificity 0.783. 

Our best average accuracy in recognizing abnormal 

cases (malignant plus benign versus healthy) for the 

whole images in DDSM data base was 85.83%, sensitivity 

82.82%, specificity 86.59% and AUC=0.919. The only 

recent results presented also for the whole DDSM data 

base (2003 abnormal and 9215 normal mammograms) are 

given in [11]. The accuracy in abnormality detection 

(malignant plus benign versus healthy) reported in this 

paper by using the curvelets for the same DDSM data 

base was in the range from 81.3% to 86.4% depending on 

the applied feature set. However, the sensitivity, 

specificity and AUC were not given. It is difficult to 

assess the quality of their solution on the basis of only 

accuracy value, since it is very easy for this unbalanced 

data set (2003 abnormal and 9215 normal mammograms) 

to obtain high accuracy on the cost of sensitivity. In our 

additional experiments by applying the accuracy as the 

quality measure of an ensemble, we have obtained the 

average accuracy equal 89.4%, however, on the cost of 

sensitivity which has dropped to only 69.5%. 

 

4 Conclusions 

The paper has presented the comparative analysis of 

the classical and deep learning approach to the recognition 

of abnormal from normal cases on the basis of the 

mammogram images. In the classical approach the 

extended set of numerical descriptors has been proposed. 

They were defined on the basis of different principles of 

image characterization and included representation of the 

image by Hilbert form and corresponding descriptors, 

Kolmogorov-Smirnov statistics, maximum subregion 

principle, percolation theory, fractal texture descriptors as 

well as application of wavelet and wavelet packets. 

Thanks to so many applied methods, different points of 

view on the image were considered in pattern recognition. 

However, in spite of such rich descriptive representation 

of the images and application of the efficient SVM 

classifier, the results were inferior in comparison to the 

application of deep learning approach, enhanced by the 

non-negative matrix factorization and self-similarity of 

the images.  

The most important advantage of deep learning for 

mammogram recognition is the relatively simple way of 

preparation of input data to the convolutional neural 

network. The diagnostic features are self-defined in an 

unsupervised approach to the process of CNN learning. 

However, to get good results of recognition large number 

of learning samples should be used. The NMF and self-

similarity transformations have not only enhanced the 

information of the image details but also increased the 

population of samples taking part in learning. Better 

results of recognition might be expected after further 

increasing the population of the original images of the 

mammograms.  

The additional investigations are needed to increase 

the accuracy to the level acceptable for everyday use in 

medical practice. The next investigations will explore 
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both approaches. The classical one will be directed to 

apply more classifiers arranged in an ensemble to increase 

the diversity of principles on the basis of which the final 

decision is made. In the case of deep learning the new 

perspective are open now by transfer learning [26]. The 

more specialized ways of learning the hidden neurons in 

CNN will be studied. In both cases the accuracy of image 

recognition might be increased by applying the larger data 

base of abnormal cases.  
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